Encountering novel problems continuously, being encouraged
1o seek comprehension, freedom from urgent need for rewards.
ond dzalogical interaction all aid mathematical understanding.

Social and Motivational
Bases for Mathematical
Understanding

Giyoo Hatano

Distinguishing Between Adaptive and Routine Experts

The development of mathematical cognition is undoubtedly based on
learners’ experience, more specifically on practice in solving mathe-
matical problems. It can be conceptualized as a process of acquiring
expertise—that is, the accumulation and reorganization of domain-spe-
cific knowledge through problem solving. Recent studies on expert-
novice differences in knowledge-rich domains such as physics and math-
ematics have shown that experts, using their rich and well-organized
body of knowledge, generate an appropriate representation of a problem
so that they can handle it easily to solve the problem (Chi, Glaser, and
Rees, 1982; Glaser, 1986).

However, nat all experts are flexible encugh to be able to solve novel
types of problems, even within the domain in which they have acquired
expertise. While some learners are flexible in their use of those mathe-
matical formulae and computation procedures they know, others can
apply their problem-solving skills efficiently but only to the types of
problems they have practiced routinely.
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Hatano and Inagaki (1986) attribute this difference in flexibility or
adaptiveness to the extent of conceptual knowledge possessed. People
who are regarded as experts in the target domain have a body of proce-
dural knowledge needed to solve familiar types of problems promptly.
They have procedures for making judgments as well as executing actions.
However, they may not have conceptual knowledge, which is defined
here as “more or less comprehensive knowledge of the nature of the
object” of the procedures. The abject may be a physical entity, for exam-
ple, a device people operate many times, a plant they raise, and so on.
The knowledge about the entity is often called a mental model (Gentner
and Stevens, 1983)—a set of properties of the object, which people can
use in mental simulations. The object may also be a cognitive entity
characterized by its rich relationships (Hiebert and Lefevre, 1986), such
as the decimal system of numbers,

Because of conceptual knowledge, which enables one 10 find the mean-
ing of each step of the procedure in terms of the object’s properties and
their changes, one can understand how and why a given procedure works.
More specifically, one can explain why the procedure is valid—that 1s,
one can obtain what Greeno (1980} calls explicit understanding. With
conceptual knowledge one can also judge not only the conventional ver-
sion but also variations of the procedure as appropriate or inappropriate
and then modify the procedure according to changes in constraints—that
is, one can achieve implicit understanding (Greeno, 1980}. For example,
the conceptual knowledge of the decimal number system is the basis for
explaining the borrowing procedure, differentiating “buggy algorithms"
from unusual but valid procedures, and applying flexibly the procedure
of multidigit subtraction.

In this way, we distinguish adaptive experts—those who have
acquired rich conceptual knowledge—from routine experts—those who
have not acquired such knowledge. While the latter are also experts by
virtue of their speed and accuracy in solving routine problems, they are
not able to “invent” new procedures, All they can do when given a novel
type of problem or an apparently familiar one under modified conditions
is to make minor adjusuments, relying on trial and error.

Two comments are added 10 avoid possible misinterpretations: First,
the skills of routine experts—applying procedures without conceptual
knowledge—are not useless. To be a competent problem solver, one has
to know how 10 apply the procedure and when to do so, but one does not
have 10 go beyond this. We can solve a great number of mathematical
problems using the right procedure at the right time without having the
corresponding conceptual knowledge or understanding based on it. Very
few of us in fact can explain why a given procedure (for instance, “To
divide fractions, reverse the numerator and denominator of the divisor
and multiply”) works, though we believe it is valid and we can apply it
efficiently. Lack of conceptual knowledge becomes a serious deficit only
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when unusual, novel types of problems are posed. Thus, after having
applied a procedure many times successfully, we may lose interest in
knowing why the procedure works, because we take it for granted.

Second, conceptual knowledge may be incomplete or incorrect. A
person may know that an orchid is similar to a cactus without being able
to specify the differences between the two. Conceptual knowledge may
involve false elements, as revealed most clearly in the case of so-called
misconceptions, which contradict some known facts yet explain others.
For example, many children believe that a potted plant can grow if it is
given only water.

How and When Is Conceptual Knowledge Acquired?

No one has proposed a well-articulated theory. but typically concep-
tual knowledge is acquired by the process of constructing, elaborating,
or revising the model so that it will plausibly explain a set of observed
relationships. This process accompanies abduction, that is, the con-
strained generation of explanatory hypotheses based on limited data.

Consider an example of this process of abduction and of the con-
struction of a model. After accumulated experience of growing flowers, a
five-year-old girl stated, “Flowers are like people. If flowers eat nothing,
they will fall down of hunger. If they eat too much, they will be taken
ill” (Motoyoshi, 1979). The child generated explanations for her observa-
tions—that is, either giving no water or oo much water makes flowers
wither—by personifying flowers. In this process, she has developed a
model of flowers as having a human-like structure. She chose this expla-
nation from among a great many possible explanations, probably because
her induction was constrained by the tendency to transfer knowledge
about humans to all other living things, which is common among young
children (Carey, 1985; Hatano and Inagaki, 1987a). '

When is conceptual knowledge likely to be acquired? Tt is assumed
that conceptual knowledge cannot be transmitted verbally or graphically.
In other words, it must be constructed by each individual, though the
process of construction can be guided to some extent by direct or indirect
teaching. [ts construction—formation, elaboration, or revision—is likely
to occur, often as a by-product, when one seeks causal explanations for a
given set of observed connections (for example, why a given procedure
produces particular results). One is seldom engaged in activities aiming
at the construction per se, though once constructed, conceptual knowl-
edge plays an important role in solving various types of novel problems.

A Model of Adaptive Expertise

Under what circumstances does one construct rich conceptual knowl-
edge and become an adaptive expert? What conditions tend to lead one
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to a routine expert, even after applying procedures many times to solve a
large number of problems in a given domain?

How likely one is (o acquire conceptual knowledge depends on the
nature of the object and procedures for dealing with it. Among others,
the following two cognitive conditions seem critical: (1} more or less
appropriate models of the object can easily be obtained, and (2)‘steps qf
the procedures can eastly be separated and manipulated. Since this acqui-
sition is a process of building a model and checking it with the data, a
good candidate model, even if very tentative and implicit, must.be avail-
able. Knowledge may be obtained primarily through perception, as a
somewhat vague image of the object (for example, we can learp how a
water-drinking doll works by breaking it up and obscrvir}g its parts
closely), and by verbal and graphic description of the object’s major
characteristics {for example, a blueprint of a machine helps us underst_and
it). Or knowledge may be derived indirectly on the basis of its functions
or reactions. In the latter case, it is usually borrowed from elsewhere,‘ as
in the above example of personification of flowers. Knowledge acquisi-
tion also required multiple observations in which the procedure is broken
down into steps or componerus and some are varied more or less system-
atically. In order to check a hypothetically assigned meaning, one ha_s to
change or omit the critical step or component. Such system‘observa'upn.
most evident among scientists, is needed to some extent in acquiring
conceptual knowledge.

Although these two cognilive conditions are necessary, they are far
from sufficient for the acquisition of conceptual knowledge and adaptive
expertise. It is difficult to explain why very few students_ l?ecome adap-tﬁve
experts in terms of cognitive conditions alone. In addltmq to cognitive
conditions, motivational conditions seem critical. Assuming cognitive
conditions are satisfied, one is likely to become an adaptive expert if and
only if he or she is motivated to understand why procedures work while
using them for problem solving.

When Are We Motivated to Understand? My colleague and I (Hatano
and Inagaki, 1987b) have tried to formulate a process model of the
arousal of motivation for comprehension drawing on Berlyne’s theory of
epistemic behavior (Berlyne, 1963, 1965a, 1965b). This theory assumes
that, since human beings are intrinsically motivated to understand the
world. “cognitive incongruity” —ithat is, a state where a person feels that
his or her comprehension is intolerably inadequate—motivates a person
to pursue subjectively adequate comprehension or satisfactqn/ expl.at-la-
tions. Cognitive incongruity induces enduring comprehension activity,
including seeking further information from the outside, retrieving
another piece of prior knowledge, generating new inferences, examining
the compatibility of inferences more closely, and so on. .

Three types of cognitive incongruity are distinguished. One is sur-
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prise, which is induced when a person encounters an event or informa-
tion that disconfirms a prediction based on prior knowledge, A person
will be motivated to understand why the prediction has failed and how
0 repair the prior knowledge by incorporating the new information.
Another is perplexity, which is induced when a person is aware of equally
plausible but competing ideas (predictions, assertions. explanauions, and
so forth) related to the target object or procedure. In this case one seeks
further information in order not only to choose one of the alternatives
but also to lind justifications for the choice. The third is discoordination.
This is the awareness of a lack of coordination among some or all of the
pieces of knowledge involved. In other words, it is induced when one
recognizes that though pieces of knowledge about the target are available,
thev are not well connected or thal other pieces of related information
cannot be generated by combining or in any way transforming the exist-
Ing ones,

It should be noted, however, that the objective lack or inadequacy of
comprehension does not always induce cognitive incongruity, nor does
cognitive tncongruity always induce comprehension activity. In order for
cognitive incongruity to occur, people must themselves recognize the
inadequacy of their comprehension. To do this, they must be able 10
monitor their own comprehension.

There exist two limiting conditions to be fulfilled before cognitive
tncongruity leads to enduring comprehension activity, One limiting con-
dition is that people realize the importance and possibility of compre-
hension. Only when people have confidence in their ability to understand
and when they experience cognitive incongruity about a target they value
{because it is relevant to their lives) are they likely to engage in com-
prehension activity. Otherwise, they will be reluctant to engage in com-
prehension activity (which requires much mental effort), and they may
suppress the motivation to comprehend.

The other limiting condition is the freedom from any urgent external
need—for material reward, positive evaluation, or definitely correct
answers. Studies on the so-called undermining effects of extrinsic rewards
have shown that promised or given rewards deteriorate hoth the quality
of performance in the task and intrinsic interest (Lepper, 1983; Lepper
and Greene, 1978). This suggests, though indirectly, the possibility that
extrinsic rewards inhibit motivation for comprehension. The expectation
of rewards may change the goal of ongoing cognitive activity from com-
prehension to obtaining such rewards (Inagaki, 1980).

From the process model described so far, we can deduce the following
three conditions under which a studen is likely to be motivated 1o com-
prehend procedures used for problem solving and thus to become an
adaprive expert in a domain:

1. One encounters novel types of problems continuously in the course
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of acquiring expertise. Whereas familiar types of problems can easily be
solved by applying the known procedure in an algorithmic way, thus
avoiding cognitive incongruity, novel types of problems tend to produce
perplexity and discoordination. Finding that a proposed solution is
wrong tends to induce surprise.

9. One is encouraged to seek comprehension. Encouragement aof com-
prehension leads an individual to form metacognitive beliels emphasizing
the significance and capability of comprehension (at least in the domain
in which expertise is acquired); this makes comprehension activiry likely
1o occur when cognitive incongruity is induced.

3. One is free from urgent need to obtain external reinforcement when
solving problems. One can pursue comprehension only when the pressure
1o obtain rewards is not very strong, because engaging in comprehension
activity is seldom the surest and shortest way to rewards. When solving a
problem correctly is vitally important, one is likely to concentrate on it.
suppressing cognitive incongruity.

The process model described above implies that the arousal of moti-
vation for comprehension depends heavily on prior knowledge. In order
for incongruity to be induced, one has to have relevant pieces of wells
established knowledge. Surprise is felt only after a firm expectation is
derived from prior knowledge. Perplexity is induced when more alterna-
tives than one are judged plausible in the light of prior knowledge. Dis-
coordination may occur only when a fair amount of relevant knowledge
is available for further processing. Furthermore, as suggested by Mark-
man (1981), people can promptly recognize the inadequacy of compre-
hension only in the domains where they have acquired rich and well-
structured knowledge—that is, in their “domains of expertise.” Likewise,
individuals have their own “‘domains of interest” in which they believe
they are able to comprehend and also in which the comprehension is
valuable and independent of exiernal rewards. People ate willing to
engage in prolonged comprehension activity in these domains.

However, outside their domains of expertise and interest, people are

" unlikely to recognize the inadequacy of their comprehension, unlikely Lo
engage in comprehension aclivity even when incongruity is aroused,
and, as a consequence, unlikely to acquire knowledge through compre-
hension. This vicious cycle of people as cognitive systems cannot be
broken by introducing external reinforcement, because peaple are likely
to be attracted to seek it, moving further away from comprehension.

Dialogical Interaction Induces Comprehension Activity. Those activ-
ities that can amplify motivation for comprehension outside the domains
of expertise and interest are social-interactional ones in most cases. Dia-
logical interactions, such as discussion, controversy, and reciprocal teach-
ing, in which knowledge or comprehension is to be shared often serve to
enhance comprehension activity. Miyake (1986) poses a good example of
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how dialogical interaction motivates persons to engage in prolonged
comprehension activity that would not be induced without a partner.
When asked to find why a sewing machine can make stitches, Miyake
fou_nd that pairs of subjects spent as long as sixty to ninety minutes
trying to integrate different perspectives and knowledge bases through
discussion. One of the pair claimed to understand the device before long,
but criticism by the parier created once again the state of nonunder-
standing (cognitive incongruity) that motivated the pursuit of deeper
levels of understanding.

Why is dialogical interaction effective in inducing comprehension
activity even among those students who lack rich and well-organized
knowledge? Such interaction {1) tends to produce and amplify surprise,
perplexity, and discoordination by helping people monitor their compre-
hension; and (2) relates the less familiar domain to one's domains of
expertise and interest.

Surprise can be aroused by asking a person to make a prediction and
then giving information that clearly disconfirms it. Surprise can be
heightened when the prediction is given openly and unmistakably in
dialogue. Perplexity is induced when one finds different ideas among
fellow participants in dialogical interaction. The presence of others
expressing different ideas is especially advantageous for amplifying per-
plexity, because one has to confront them. It is harder to maintain as
plausible those ideas one merely reads or is exposed to passively.

A person may experience discoordination in the process of trying to
explain why his or her views are reasonable when asked for clarification
or when the views are directly challenged or disputed. Why is discoordi-
nation induced in such situationst [nagaki {1986) offers three reasons:
First, one has to verbalize (make explicit what has been known only
implicitly) in the process of trying to convince or teach others. This will
lead one o examine one's own comprehension in detail and thus become
aware of any thus far unnoticed inadequacies in the coordination among
those pieces of knowledge. Second, since persuasion or teaching requires
the orderly presentation of ideas, one has 1o organize better intra-individ-
gally what has been known. Third, for effective argumentation or teach-
ing, one must incorporate opposing ideas—that is, coordinate different
points of view inter-individuaily between proponents and opponents or
between tutors and learners. Strong discoordination occurs only when
one struggles to coordinate, since it is practically impossible 1o coordinate
all the pieces of information available at any given moment,

_ Discussion, controversy, or teaching satisfies the first limiting condi-
tion as well—thal is, it can help one realize the importance and possibil-
ity of comprehension. First, any ol these elements invites a person to
“rommit”’ to some ideas by requiring the person to state the ideas to
others, thereby placing the issue in question in the domains of interest.
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Second, the social setting makes the enterprise of comprehension mean-
ingful. Uniess extrinsic motivation (such as winning the debate) is so
strong that is supercedes motivation for comprehension. this social aspect
will make comprehension activity enduring.

The above discussion strongly suggests that dialogical interaction
enhances motivation for comprehension and thus the construction of
conceptual knowledge. In fact, a number of investigators with differing
theoretical orientations have found that peer discussion and decision
making facilitate meaningful learning, understanding, and cognitive
growth (Inagaki, 1986; Perret-Clermont, 1980; Smith, Johnson, and
Johnson, 1981).

Therefore, it is reasonable to assume that frequent dialogical interac-
tion tends to lead to adaptive expertise. In addition to the three motiva-
tional conditions mentioned above, the following fourth condition might
be appended:

4. The procedures are used often in dialogical interaction. One is likely
to seek justifications and explanations much more often in dialogical
interaction than in solitary activity.

Applications of the Model

The above model of adaptive expertise can be applied to some
damains of mathematical problem solving in an attempt to predict what
type of experts students are likely to become from the four motivational
conditions.

What Do Abacus Learners Fail to Acquire? If, in the course of acquir-
ing expertise (1) one is given the same types of problems repeatedly, (2)
efficiency is valued much but understanding is not, (3) always getting
the right answer is required, and (4) procedures are seldom used in the
dialogical context (that is, none of the four conditions for adaptive exper-
tise is satisfied), one will necessarily become no more than a routine
expert. A typical case of such routine expertise is expertise in mental
abacus .operation.

A large number of Japanese children learn abacus operation in addi-
tion to paper-and-pencil calculation. They use an abacus that has a five-
unit bead in the upper section and four one-unit beads in the lower
section in each column. The numbers 0 through 9 are represented by
“entering” (pushing toward the dividing bar) different combinations of
heads. Addition and subtraction are done by pushing beads toward and
away from the bar, with a few rules regarding carrying and borrowing.
For example, if an addend needs more beads than available, add 1 to one
column left and subtract the complementary number-to-10 of the addend
from the target column (see Figure 1).
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Figure 1. An Example of Addition with an Abacus: 9 + § = 17
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a. Enter 9.
b. You cannot add 8 in the ones column which has 9. So remove the complemen-

tary number-to-10 of 8 (that is 2) from the ones column.
. Add 1 to the tens column.

Abacus operation, still used daily at small shops, is usually learned at a
private school specialized for it, though it is sometimes acquired through
informal observations and teaching. At the school students are given
many problems for the four calculations without having the meaning of
each step of calculation explained to them in detail. Since one can learn
how to operate the instrument in just a few hours, training afterward is
geared almost entirely 1o accelerating the speed of the operation.

Some abacus learners in fact become extraordinarily quick in calcula-
tion. For example, a fourth-grade girl my associate and I observed could
solve 30 printed multidigit multiplication problems, 3 digits by 3 digits
{for instance, 148 x 395) or 4 digits by 2 digits (3,519 x 42}, in 58 seconds.
This alone was surprising, but her net calculation time was even
shorter—she needed the total amount of time for writing the answers
down.

Several mechanisms are offered to explain this speed of calculation
based on results from a large number of experiments (Hatano, forthcom-
ing). First, a set of specific rules ("If addend 6 cannot enter, add 1 to one
column left and subtract 4 from the target column”) replaces the general
rule that involves a variable (“the complementary number-to-10 of the
addend" varies depending on the addend), and then a few such specific
rules are merged into a single rule to get the final state directly (“If 7 is to
be added to 6, add 1 to one column lefi and leave 3 at the target column™).
Second, the application of these merged specific rules becomes more and
more automatic.
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Third, sensorimotor operation on physical representation of abacus
beads comes to be interiorized as mental operation on a mental represen-
tation of an abacus. By this, the speed of the operation is no more limited
by the speed of muscle movement. Fourth, a module-like system to repre-
sent mentally a number or series of digits in a form of the configuration
of abacus beads, which is activated without any conscious effort or deci-
sion making, is established. Fifth, the mental imagery of abacus becomes
simplified, eliminating properties unnecessary for calculation (such as
the color of beads), so that the abacus can be manipulated even more
quickly. Finally, monitoring of the operation is removed to use one’s
processing capacity to speed up the operation itself, since an expert's
calculation is so fast that calculating twice is simpler than monitoring.

It should be noted that this process of acceleration of calculation
speed results in a sacrifice of understanding and of the construction of
conceptual knowledge. It is hard to unpack a merged specific rule to find
the meaning of any given step (for example, leaving 3 at the target col-
umn when 7 is added to 6). A number is represented only in terms of a
simplified image of beads that does not have rich meaning. No mental
resources are used to reflect on why the procedure works, since this reflec-
tion would slow down calculation.

There have been a few studies suggesting that intermediate abacus
learners do not know the meaning of the steps of abacus operation and
that even experts lack conceptual knowledge. For example, interviews
with abacus-learning third-graders about why certain sieps were per-
formed in the operation revealed that after a year of practice at an abacus
school, they could explain the multidigit subtraction procedure no better
than their agemates who just started the practice (Amaiwa and Hatano,
1583).

A)maiwa (1987) examined whether another group of third-graders who
had practiced abacus operation for a year could repair their “buggy”
paper-and-pencil calculation procedures by transferring the knowledge
about the abacus procedure. She required the students alternately to solve
the same problems with paper and pencil and with an abacus and lound
that many of them continuously made incorrect responses by the Eor.mer
procedure but correct responses by the latter. Amaiwa interpreted this 10
mean that since the students did not understand the meaning of steps of
“base” abacus operation, they could not derive specific pieces of infor-
mation to repair the “'target” paper-and-pencil procedure.

In ather unpublished studies with experts and junior experts, Amaiwa
and 1 have found that they were not flexible in the use of their skills.
When they were given multiplication and division problems, some of
which could be solved by using simplifying strategies (99 x 38 —>
38 x 100 - 38; 9,250 =~ 25 —> 9,250 x 4 + 100 —> 925 x 4 - 10), they did
not recognize this possibility and solved all the problems mechanically in
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the same way, though their calculation was still much faster than that of
ordinary college students. Another study revealed that the experts could
not transfer their skills to nonconventional abacuses that were for a base
6 or 12 system. They performed no better with these abacuses than college
students who had had negligible experience with the standard abacus.
We must conclude that abacus operators apply the calculation procedures
thousands of times without comprehending why ihe procedures work,
probably because they have not constructed conceptual knowledge of the
base 10 and other systems of numbers.

Abacus Operation and Street Mathematics. Abacus operation can be
cornpared with other informal mathematical practices that have devel-
oped under different motivational conditions. It is interesting to do such
a comparison because it helps clarify the significance of the four motiva-
tional conditions for determining the course of expertise. “‘Street mathe-
matics’” in Brazil will be used as an example (Carraher, Carraher, and
Schliemann, 1985).

Apparently, abacus operation and street mathematics have much in
common: (1) Both are used almost exclusively for commercial activities;
{2} both can be acquired without systematic teaching; (3) bath are outside
of the “official knowledge” taught in school. However, they are radically
different in “'sernantic transparency’—that is, in the clarity of the mean-
ing of each calculation step. Steps of street mathematics, or “oral mathe-
matics” (Carraher, Carraher, and Schliemann, 1987}, in general, are clear
in meaning, because the representations manipulated therein are infor-
mation rich, and the ways of manipulation are analogous to actual acriv-
ity dealing with goods, coins, and notes. For exarnple, in order to find
the price for twelve lemons of Cr$5.00 each, a nine-year-old child who
was an expert street mathematician counted up by 10 (10. 20, 30, 10, 50,
60) while separating out two lemons at a time {Carraher. Carraher, and
Schliemann, 1985). Quite to the contrary, representations of numbers on
an abacus, though visibly concrete, are impoverished in meaning, and
the way of manipulation is just mechanical.

Moreover, Brazilian children can flexibly use street mathematics or
oral mathematics procedures, Oral computation procedures, often relying
on decomposition and regrouping, generally reveal “solid understanding
of the decimal system’ (Carraher, Carraher, and Schliemann, 1987,
p. 83)—that is, conceptual knowledge. Thus street mathematicians can
be adaptive experts, while abacus operators are always routine experts.

These differences in knowledge come from differences in the cultural
context of the practice and resuliant motivational coaditions for acquir-
ing expertise. More specifically, what is different is the function of each
mathematical practice in commercial activities. Street mathematics is
basically a means by which a vendor and a customer reach an agreement
as 10 the total price. It is an interpersanal enterprise that requires seman-
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tic transparency—otherwise the customer may be suspicious. Calculations
cannol be performed very quickly, because they manipulate meaning-
rich representations. However, the economy in which a young Brazilian
vendor lives does not require high efficiency in calculation,

From the above analyses it can be assumed that (1) sireet mathemati-
cians are posed novel types of problems fairly often because of changes in
praducts, prices (as inflation increases), and customers’ needs; (2) they
are encouraged to seek comprehension as far as needed to explain to the
customer the process of calculation; (3) accuracy of calculation is
required, but not excessively, because its semantic transparency helps the
vendor and customer recognize possible errors in calculation; and (4)
calculation is done mostly in dialogical context. If these assumptions are
correct, the motivatzonal conditions for Brazilian vendors are radically
different from those for abacus leamners.

In contrast, Japanese abacus operation is basically a solitary activity
in which operators handle large numbers quickly and accurately. Experi-
enced abacus operators must be able to handle simplified representations,
because the economy in which abacus operation developed required effi-
ciency. A person or culture that values excessive efficiency must be content
with simplified representations, giving up semantic transparency, under-
standing, and the construction of conceptual knowledge. Its operators
are not interested in the semantic transparency of the calculation process
either, because they believe that their skills ensure the correctness of the
answer. Even when abacus operation is used in interpersonal situations
of buying and selling, both the vendor and the customer are willing, in
most cases, 10 accept the answers. Many Japanese customers and vendors
seem to think that abacus operation is more dependable than calculation
with a calculator.

Some Instructional Inplications. From the preceding discussion of
the nature of abacus operation as a {orm of nonschool, or “informal,”
mathematics, two instructional implications can be derived. First,
teachers must keep in mind that not every mathematics procedure that
emerges in nonschool settings can serve as a basis for understanding how
and why the corresponding school mathematics procedure works. Carra-
her and colleagues (1985) maintain mathematics learning in daily life
produces effective and meaningful procedures that can complement poten-
tially richer and more powerful mathematical tools acquired in school at
the expense of meaning. However, daily life procedures are in fact seman-
tically transparent—that is, the meaning of each step is understood by
students only when the motivational conditions for their acquisition
enhance the construction of conceptual knowledge.

1 doubt that all {or nearly all) daily routines are meaningtul—that is,
clear—regarding why each step is needed. In principle, “our lives are
filled with procedures we carry out simply to get things done” (Hatano
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and Inagaki, 1986, p. 266). Adults as well as children most likely perform
some everyday problem-solving procedures only because they “work,”
without understanding the meaning of each step. If we repear these steps
hundreds of times, we can become quite skillful at them—that is, we can
become routine experts. Pressing a key of a calculator to find the sqQuare
root of & given number, like subtracting using an abacus, can be consid-
ered as one of such procedures.

Therefore, I doubt that it is always possible to find a semantically
transparent informal procedure as the point of departure when we are to
teach a formal one. We may need another strategy to make formal math-
ematics procedures meaningful. The second implication is relevant at
this point, If we want to enable students to understand how and why
school procedures work, we have 10 approximate the process of learning
to the acquisition of street mathemalics, not to expertise in abacus oper-
ation. In other words, we might encourage students to construct con-
ceptual knowledge by providing the four motivational conditions that
enhance it.

Although some traditional curriculum goals, such as efficiency in
problem solving, accuracy, speed of calculation, and so on, must be sacri-
ficed to some extent in order to pursue adaptive expertise, a majority of
mathematics educators may be willing to do so if a model system of
instruction for adaptive expertise is available. Such a model system is a
Japanese science education method called Hypothesis-Experiment-
Instruction, originally devised by Itakura (1962). A few people in Itakura's
research group have applied the same instructional procedure to mathe-
matics and limited areas of social studies. Hypothesis-Experiment-Instruc-
tion creates conditions for conceptual knowledge acquisition by
maximally utilizing classroom discussion as well as by carefully sequenc-
ing problems.

The instructional procedure is as follows:

1. Students are presented with a question with three or four answer
alternatives,

2. Students are asked to choose ane answer by themselves.

3. Students’ responses, counted by a show of hands, are tabulated on
the blackboard.

4. Students are encouraged to explain and discuss their choices with
one another.

5. Students are asked to choose an alternative once again (they may
change their choices).

6. Students are allowed to test their predictions by observing an exper-
iment (or reading a given passage).

Each answer alternative of a question represents a plausible idea, for
example, a common misconception held by students as well as the correct
one. Such a question will surely induce perplexity and discoordination.
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It is also emphasized that students can clearly confirm or disconfirm
their predictions by external feedback. Since questions arranged at the
beginning part of a topic are likely to have right answers that contradict
students’ “modal” predictions based on their prior knowledge, they will
experience surprise with the feedback.

If you visit a classroom in which Hypothesis-Experiment-Instruction
is implemented successfully, you will be impressed by lively discussions
in a large group of forty to forty-five students. You will recognize that the
teacher is a facilitator who tries to stay as neutral as possible during
students’ discussion. This neutral attitude of the teacher is effective for
encouraging students to seek comprehension and also for reducing their
need to get external reinforcement, because pupils are invited to offer
persuasive arguments to other pupils instead of seeking the right answer
authorized by the teacher.

A few studies examining the effectiveness of this method (Hatano and
Inagaki, 1987b; Inagaki and Hatano, 1968, 1977) have shown that the
preceding six-step procedure tends to produce (1) higher student interest
in testing their predictions or finding explanations, (2) a larger number
of adequate explanations of the abserved fact or stated rule, and {3) more
prompt and more proper application of the learned procedure to a variety
of situations. Many anecdotal reports strongly suggest that students
taught in this method of instruction gradually come to think that under-
standing the how and why is more important than making the correct
predictions. Therefore, although there is no direct evidence that students
taught by Hypothesis-Experiment-Instruction tend to become adaptive
experts in school science and mathematics, it seems a promising model

system.
Conclusion

A model of adaptive expertise suggests four conditions under which
stadents, while using procedures for solving a large number of problems.
are mativated to comprehend the procedures and thus acquire conceptual
knowledge. These conditions are (1) encountering novel types of prob-
lems continuously, (2) being encouraged to seeck comprehension over
efficiency, (3) freedom from urgent need to get external reinforcement,
and (4) dialogical interaction. When none of these conditions are met, as
in the case of abacus operation, students are very unlikely to acquire the
conceptual knowledge enabling them to understand the meaning of proce-
dures though they are skilled in the procedures. On the contrary, when
these conditions are satisfied more or less adequately, as in the case of
Brazilian street mathematics, learners are likely 1o achieve understanding
and flexibility of procedures.

Although we need more direct and controlled tests, these motivational
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conditions seem important for the development of mathematical under-
standing in instruction.
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