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Two studies were conducted to explore mathematical precocity in young children. Study 1

examined mathematically gifted first and third graders’ working memory development. The results

showed that mathematically gifted children’s working memory growth was similar to that expected

of their age peers. Study 2 examined changes in mathematically gifted children’s conceptual

structures. Mathematically gifted children were roughly a year ahead of their age peers in the rate

of development of conceptual structure in the numerical domain. A neo-Piagetian theory of

intellectual development was used to explain these seemingly conflicting findings. The relation

between working memory growth and conceptual development was discussed throughout the

paper.

Introduction

Despite an increasing body of literature on differences in intellectual ability, little is

known about the nature and characteristics of mathematical precocity in young

children. Among many questions of interest is whether gifted children’s thinking is

similar to that of their chronological age peers or mental age peers. Some argue that

gifted children are born with atypical brain organization (O’Boyle et al., 1991,

1994). This view suggests that gifted children begin their life’s journey with

intellectual advantages leading them to take unique developmental paths. Some

others argue that the amount of deliberate practice is the determining factor of

expertise (Ericsson, 2003; Ericsson et al., 2005). This view claims little or no initial

developmental advantage for gifted children.

A neo-Piagetian theory of intellectual development postulated by Case and his

colleagues (Case, 1992; Case & Okamoto, 1996) views the intellectual development

of gifted children as not radically different from that of their chronological age peers.

The theory predicts a relatively universal pattern of development with an age-typical

upper bound at each stage of development, with gifted children no exception. This is
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not to discredit gifted children’s superior performance. Rather, gifted children are

seen as possessing special ability, for example, for rapid learning of academic

material or learning a particular type of content. The claim is that gifted children’s

advantages are domain- or task-specific with system-wide constraints setting an

age-related upper bound.

According to Case’s (1985; Case & Okamoto, 1996) theory, available working

memory capacity is the primary limiter on children’s developmental progression.

Using this theory as a framework to view giftedness, it is reasonable to expect that

the development of gifted children’s working memory is similar to that of their age

peers. Empirical evidence, however, is somewhat mixed. On a variety of working

memory measures, some studies have found gifted children to perform in a manner

consistent with their age peers (Globerson, 1985; Porath, 1992, 1996, 1997). Others

reported superior performance of gifted children on various working memory

measures (Schofield & Ashman, 1987; Segalowitz et al., 1992; Saccuzzo et al.,

1994). Explanations for these inconsistent findings may involve the selection of

working memory measures in relation to target cognitive abilities. The question

remains open as to the role of working memory in the development of mathematical

precocity in young children. This is the question addressed in the first study.

Whether or not gifted children are similar to their age peers in the rate of

development of working memory, gifted children, by definition, do show superior

performance in the area of their strengths. For mathematically precocious children,

it is their number sense, speed and accuracy of solving numerical and quantitative

problems, and their interest in these tasks that distance them from their age peers.

All these factors seem to point to advanced conceptual understanding in the

quantitative domain. That is, mathematical precocity may not advance general

intellectual development but instead be related to children’s increased schematic

repertoire in the quantitative domain.

Mathematically gifted children’s structural changes have not been examined

empirically. One study that examined cognitive abilities of mathematically

precocious children in kindergarten and first grade found their quantitative ability

to be highly correlated with spatial ability but to a lesser degree with verbal ability

(Robinson et al., 1996). Coupled with findings from verbally precocious toddlers

(Dale et al., 1995), these findings suggest that young children are beginning to

develop differentiated abilities early on—at least in the quantitative and verbal

domains. Quantitative and spatial abilities, on the other hand, appear to co-exist in

mathematically precocious children of this age.

The neo-Piagetian theory of intellectual development adopted for the current

study may be able to shed light on these seemingly conflicting findings. Case

postulated that intellectual development has its origin in the evolutionary history of

the human organism, including the modular structure of the cortex. Human infants,

during the first few months of life, parse their experience into a set of basic

categories, which later become well-distinguished domains of knowledge. In the

numerical domain, children by 4-years-old typically assemble a knowledge network

consisting of counting principles as well as a network for making quantitative
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comparisons. The latter network relies heavily on children’s ability to make visual–

spatial judgments. By 6-years-old, children integrate these two knowledge networks

to assemble a higher order structure, called a ‘central numerical structure’.1 This

structure no longer requires reliance on spatial ability. Based on the foregoing

analysis, it is reasonable to expect an overlap between quantitative and spatial

abilities prior to 6-years-old. As children mature, these two abilities are expected to

become differentiated. Young children’s abilities in the quantitative and verbal

domains, however, have little overlap in content. Therefore, it is reasonable to

expect low correlations between them even among toddlers.

The second study reported in this article examined changes in mathematically

gifted children’s conceptual structures. The primary aim was to characterize the

developmental changes that take place as preschoolers move from developing two

independent schemas for counting (numerical) and quantity judgments (visual–

spatial) to a unified conceptual structure that is unique to the numerical domain.

Analyses therefore focused on children 5 to 7 years old who are expected by theory

to be in the process of constructing a central numerical structure.

In summary, two aspects of mathematical precocity in young children were

examined in this paper. The first was to find out if mathematically precocious

children would show similar developmental patterns to their age peers when their

working memory was assessed. We predicted that gifted children’s working memory

has age-related limits similar to their age peers. Gifted children have been known to

develop efficient problem solving strategies and do so even within a short learning

situation such as during testing. When constraints were placed so as to prevent gifted

children from developing efficient strategies, we expected that their performance on

working memory measures would vary little from that of their age peers. The second

study addressed the question of how structural changes in the domain of numbers

would take place in mathematically gifted young children. We predicted that

mathematically gifted children would show an earlier integration in the domain in

which they excel in comparison to their age peers. In doing so, we hoped to shed

light on the close association found between quantitative and spatial abilities. Taken

together, both these studies should help increase our understanding of mathematical

precocity in young children.

Study 1

Mathematically gifted children’s working memory

Gifted children are known for their strong memory (Feldman, 1986; Gaultney et al.,

1996; Coyle et al., 1998; Gaultney, 1998; Stumpf & Eliot, 1999). On working

memory measures, however, studies have reported inconsistent findings. Some

studies found gifted children to perform in a manner consistent with their age peers

rather than their intelligence (Globerson, 1985; Porath, 1992, 1996, 1997). Others

reported superior performance of gifted children on various working memory

measures (Schofield & Ashman, 1987; Segalowitz et al., 1992; Saccuzzo et al.,

1994).
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Reasons for inconsistent findings include the complex interplay between particular

cognitive advantages of gifted children and the type of working memory measure

selected. When generally gifted children (e.g., high IQ scores) were administered

working memory measures of digit span tasks, they tended to perform better than

did their age peers. For example, Schofield and Ashman (1987) found that gifted

children in fifth and sixth grades outperformed their age peers on the working

memory measures of forward and backward digit span. Segalowitz et al. (1992) also

reported that gifted seventh graders outperformed their age peers on the forward and

backward digit span tasks. Both these studies selected gifted children on the basis of

the WISC-R (Wechsler, 1991). The gifted fifth and sixth graders in the former study

scored 125 or above on the vocabulary, object assembly and similarities subscales of

the WISC-R; the gifted seventh graders in the latter study scored 135 or above on

the full version of the WISC-R when they were in fourth grade. These studies

therefore examined the relation between general IQ and digit-span working memory.

The question of domain-specific advantage and working memory was not addressed.

In addition, the digit span tasks from the WAIS-R (Wechsler, 1955) that required

‘the subject to repeat back to the tester a series of digits read out slowly in the order

presented’ (Segalowitz et al., 1992, p. 285; our italics) may have allowed gifted

children to develop efficient strategies quickly, leading to superior performance.

Gifted children’s advantage when they are allowed to develop strategies has been

noted (Globerson, 1985). This is also confirmed in Saccuzzo et al.’s (1994) study.

They found that gifted children in second, third, fifth and sixth grades outperformed

their age peers only when the task allowed sufficient time to develop strategies.

Gifted children appear to use what working memory capacity they have to good

advantage, possibly by chunking certain concepts or using them in a flexible fashion.

Domain-specificity may also be relevant. Robinson et al. (1996) found three

measures of working memory—counting span, visual–spatial and verbal—to load on

quantitative, spatial and verbal factors, respectively. The links between particular

working memory measures and intelligence factors appear to be highly specific (Süss

et al., 2002). The studies that found gifted children to show similar levels of working

memory to their age peers used domain-specific working memory measures (Porath,

1992, 1996, 1997). In one study, Porath (1992) examined 6-year-olds’ performance

on various measures of conceptual understanding and working memory in specific

domains. She found that children who were generally, verbally and spatially gifted

outperformed their chronological and mental age peers on measures of conceptual

understandings in the logical reasoning, narrative and spatial domains, respectively.

However, their performance on two working memory measures—counting span

(Case, 1985) and visual–spatial span (Crammond, 1992) tasks—was not signifi-

cantly different from that of their chronological age peers. These working memory

measures were not only domain-specific but also designed to minimize opportunities

to use knowledge and strategy.2

Building on the work of Porath (1992, 1996, 1997), the present study was

designed to examine working memory of mathematically gifted children. We defined

working memory as the amount of information one can retain while processing
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additional information. We used domain-specific measures of working memory that

satisfied this definition. These measures were designed to prevent gifted children

from developing efficient strategies. We therefore predicted that their performance

on working memory measures would vary little from that of their age peers.

Method

Participants. A total of 25 children participated in this study. There were 12 first

graders (five boys and seven girls) and 13 third graders (eight boys and five girls).

Their mean ages were 7.0 (SD5.33) and 8.9 (SD5.42) years for first and third

graders, respectively. These students were recruited from a private elementary

school located in an upper-middle class suburb of the greater Los Angeles area. The

school is known for its academic rigor. In the area of mathematics, each of the entire

classes of first and third graders in 2005 achieved a mean percentile rank score of 87

on the Stanford Achievement Test (SAT). The criterion for participation in the

study was either superior mathematics performance on the SAT (i.e., 95 percentile

or higher) or teacher recommendation. The first and third graders’ mean SAT

percentile scores in mathematics were 93 and 95, respectively.

Measures and procedures. Two measures of working memory as well as a measure of

conceptual understanding of numbers were administered to all children. All

measures were administered individually in a quiet room near children’s classrooms.

Working memory measure in the numerical domain. The counting span task (Case,

1985; McKeough, 1992) was used as a measure of working memory in the

numerical domain. Children were presented with sets of cards. Each card displayed

a number of yellow and green dots placed in a random configuration. The task was

to count only the green dots and report the cardinal value. Children were required to

touch each green dot as they counted aloud so as to prevent them from rehearsal. As

soon as they finished counting green dots, the target card was covered and children

were asked to report the number of green dots they had just counted. At the easiest

level (Level 1, typically passed by 4-year-olds), children were shown one card. As

difficulty increased, the number of cards shown increased. That is, at the next level

(Level 2, typically passed by 6-year-olds), children were shown two cards in a row

and asked to remember the number of green dots on each of the two cards. At the

next level (Level 3, typically passed by 8-year-olds), they were shown three cards at a

time. The highest level was Level 6 with a set of six cards shown to children. If the

child missed one number out of the sequence, the response was considered

incorrect. Each level consisted of three trials. Testing continued until the child failed

to respond correctly to all three trials. As for scoring, each child received a raw score

(maximum possible was 18) as well as a level score (to qualify as passing a level, the

child must respond correctly to two of the three trials at any level).

Spatial working memory measure. Crammond’s (1992) visual–spatial span task was

used as a measure of working memory in the spatial domain. Children were shown
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an 8 cm by 8 cm matrix (2 cm62 cm cells), with some cells colored black. Children

were asked to touch each colored cell and remember its location. They were then

asked to reproduce the locations of the colored cells on a blank matrix after the target

matrix was hidden. At the easiest level (Level 1, 4-year-old level), children were

shown a grid with only one cell colored. At the next level (Level 2, 6-year-old level),

two cells were colored. As difficulty increased, the number of colored cells increased.

The highest level was Level 5 where five cells were colored black. As in the counting

span task, the child had to reproduce all of the locations correctly for each trial.

Again, each level included three trials. Testing continued until the child failed to

respond correctly to all three trials. Each child received a raw score (maximum

possible was 15) as well as a level score (two correct of the three trials).

Number knowledge task. This task, adapted from Case and his colleagues’ work

(Case & Griffin, 1989; Case & Okamoto, 1996), was designed to assess children’s

understanding of the whole number system.3 Items at the easiest level (Level 1, 4-

year-old level) assessed children’s understanding of counting principles (counting

schema) as well as quantity comparisons (quantity judgment schema). Items at the

next level (Level 2, 6-year-old level) assessed children’s understanding of single-digit

numbers. For example, children should be able to judge a quantitative magnitude

based not on visual inspection but on numerical magnitudes (e.g., which is smaller,

8 or 6?). Items at the next level (Level 3, 8-year-old level) assessed children’s

understanding of two-digit numbers (e.g., which number is closer to 21: 25 or 18?).

Items at the next level (Level 4, 10-year-old level) assessed children’s integral

understanding of whole numbers and operations (e.g., which difference is bigger; the

difference between nine and six or the difference between eight and three?). Level 54

was the highest level, which included mental computations of multiplication,

division and negative numbers such as, ‘Which is closer to 1: 21.4 or 3.7?’ The

number of items at each of the five levels was five, nine, nine, nine and six,

respectively. Testing continued until the child failed to respond correctly to more

than half of the items at a level. Each child received a raw score (maximum possible

was 38) as well as a level score (majority correct at each level).

Results

Descriptive statistics by grade levels are presented in Table 1, including means

(standard deviations) for the two working memory measures, the number knowledge

task, and the Stanford Achievement Test (SAT), as well as the number of

participants and their mean ages. It should be noted that the mean scores for the

SAT did not reach the 95th + percentile rank. The criterion for participation was

95th+ percentile on the SAT or teacher recommendation. Although 60% of the

participants were at the 95th percentile or higher on the SAT, the rest did not reach

this criterion. The number knowledge task was thus administered in order to ensure

that all of our participants would show advanced levels of numerical understanding.

As shown in Table 1 as well as Figure 1, the first and third graders obtained mean
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level scores of 3.00 and 4.23, respectively. According to the analysis by Case and

colleagues (see Case & Okamoto, 1996), age-appropriate levels of performance on

this task would be 2.5 and 3.5 for children in the first and third grades, respectively.

That is, they showed levels of conceptual understanding roughly one year (for the

first graders) and two years (for the third graders) ahead of their respective age peers.

The gifted children in this study obtained significantly higher mean scores than

expected for age (binomial tests; both p,.01, two-tailed).

The mean level scores derived from the two working memory measures were also

designed to provide age-related indices. As in the number knowledge task, scores of

2.5 and 3.5 were the mean level scores that non-gifted children of comparable age

should obtain. The mean level scores on the visual–spatial span task were 2.17 and

3.77 for the first and third graders, respectively. According to binomial tests, these

means were not significantly different from those expected of their age peers. As for

the counting span task, gifted first and third graders obtained mean scores of 2.5 and

2.92, respectively. The first graders’ mean was at the level expected for their age

whereas the third graders’ mean was below the expected age level (p,.05, binomial

test, two-tailed).

Table 1. Sample sizes, mean ages, and means (standard deviations) of gifted children by grade

levels

Age group

Age in

months SAT

Number knowledge

Working memory

Counting span Visual–spatial

Raw

score

Level

score

Raw

score

Level

score

Raw

score

Level

score

First graders

(n512)

83.75

(4.22)

93.42

(6.08)

21.92

(2.88)

3.00

(.43)

8.08

(2.07)

2.50

(.67)

7.42

(2.61)

2.17

(.58)

Third graders

(n513)

107.23

(5.54)

95.31

(3.99)

30.54

(3.62)

4.23

(.73)

9.31

(2.02)

2.92

(.76)

12.15

(2.79)

3.77

(1.09)

Figure 1. Mathematically gifted children’s performance on working memory and number

knowledge measures
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To better understand the relations between mathematical giftedness and working

memory, zero order and age-partialled correlation coefficients were computed

(Table 2). The two measures of working memory showed a low correlation of .195

(partial r5.072) to each other. The number knowledge task was significantly

correlated with each of the working memory measures: r5.475 (p,.05) for the

counting span task and r5.683 (p,.01) for the visual–spatial task. These relations

held up even when age was partialled out. Finally, the Stanford Achievement Test

(SAT) and the number knowledge task showed low correlations. The SAT was not

correlated with either of the working memory measures.

Discussion

This study examined mathematically gifted children’s working memory. The

question of interest was to find out whether or not mathematically gifted children

would show similar levels of working memory development to their age peers. The

study participants—mathematically gifted first and third graders—were tested on

two measures of working memory and a measure of conceptual understanding of

number. The results for gifted children’s conceptual understanding of number

confirmed that our participants in fact possessed advanced levels of understanding in

the domain of number. The obtained scores of 3.0 and 4.23 for first and third

graders, respectively, were statistically higher than the expected values for average

children. These scores roughly correspond to one year ahead of age expectation for

the first graders and nearly two years for the third graders. In contrast, the findings

for the participants’ working memory did not show advantages for gifted children.

These findings are consistent with earlier findings by Porath (1992, 1996, 1997)

who found children gifted in the narrative and spatial-artistic domains to show

similar levels of working memory to their age peers. These findings are in stark

contrast to the advanced levels of working memory for gifted children reported by

Schofield and Ashman (1987) and Segalowitz et al. (1992). One reason that may

account for the conflicting results is whether or not the selected tasks allow children

to develop efficient strategies during testing. The current study and those by Porath

used the tasks that were designed to minimize opportunity to develop strategies

whereas others did not. Segalowitz et al.’s study, for example, stated that the

interviewer intentionally read a series of digits slowly, allowing gifted children to

Table 2. Zero-order correlations (below diagonal) and age-partialled correlations (above

diagonal) among measures

Measure 1 2 3 4

1. Counting span working memory — .072 .452* .120

2. Visual–spatial working memory .195 — .444* .181

3. Number knowledge .475* .683** — 2.021

4. SAT .176 .318 .181 —

Note: *p,.05. **p,.01.
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develop useful strategies. It appears that gifted children do not differ from their non-

gifted peers when they are restricted from developing efficient strategies. On the

other hand, when given opportunities, gifted children appear to quickly find useful

strategies. Gifted children’s ability to develop efficient strategies appears to separate

them from their age peers in the domain of their strengths. However, this alone does

not facilitate the development of working memory capacity. Without advanced

development in working memory capacity, it is unlikely that the general rate of

development is facilitated.

Another finding of interest is the relation between conceptual understanding and

achievement. We found little or no relation between the number knowledge task and

the SAT. When age was partialled out, the correlation coefficient was 2.021 for this

sample of children. This has implications for the selection of gifted children. The

participants in this study scored higher on the average than their age peers on both

these measures but there is little overlap in what each measure is assessing. Those

children who scored below the 95th percentile on the SAT did show high levels of

conceptual understanding of number. It is reasonable to assume that the SAT and

number knowledge task measure different aspects of mathematical understandings.

The number knowledge task may play a similar role to some aspects of available

intelligence tests. This is an empirical question. It may prove worthwhile to consider

the use of the number knowledge task as part of an identification battery for gifted

children. It should also be mentioned that the SAT scores had little relation to the

working memory measures, especially when age was partialled out. One theoretical

implication of these findings is that mathematically gifted children have facilities that

compensate for their age-related working memory constraints. We speculate that

gifted children probably take advantage of their ability to develop strategies to

efficiently solve mathematics problems. The current study highlights a complex

relation that exists for gifted children among working memory, conceptual

knowledge, and school performance in the mathematical domain.

Study 2

Structural changes in gifted children’s conceptual understanding in the mathematical

domain

In the first study, we found that mathematically gifted children in first and third grades

were one to two years ahead of their age peers in the development of mathematical

concepts but the rate of development of working memory was similar to their peers.

Case’s theory of intellectual development was used to explain the discrepancy in the

two types of performance. That is, mathematically gifted children excel in the domain

of their strengths but advanced conceptual understanding did not result in superior

working memory capacity. This in turn places an age-typical upper bound at each

stage of development, with gifted children no exception. In the second study, we

focused on the development of mathematically gifted children’s conceptual under-

standing of number. Using Case’s theory as a framework, this study examined the

changes in the organization of mathematical ideas in gifted children 5 to 6 years old.
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Development of central numerical structure

Case postulated that children between the ages of 5 and 7 years old develop an

important conceptual structure that allows them to benefit from formal learning of

mathematics. This conceptual structure has been termed a ‘central numerical

structure’ (CNS) and is believed to result from an integration of children’s physical

counting and visual comparisons of quantities. Research has documented that

4-year-old children typically are able to count a set of objects in a reliable fashion,

and understand that the final number counted represents the cardinality of that set

(Gelman, 1978). They have also been found to be able to visually compare

quantities, determine one quantity to be more or less, and understand consequences

of adding or taking away objects (Starkey, 1992). As yet, these two understandings

have yet to be united in any coherent way. This type of understanding is

characterized as ‘predimensional’ (or Level 1) thought.

Between the ages of 5 and 7 years old, an important development takes place.

Children’s physical counting and visual comparisons are no longer separate activities

and they become aware of how the cultural convention of number words can index

quantity differences. This achievement is characterized as the development of the

‘unidimensional’ (or Level 2) thought. This structural integration of counting and

quantity schemas results in a central numerical structure that allows young children

to reason with numbers (as opposed to a need to always rely on concrete objects or

visual–spatial aids). Yet their understanding of numbers is limited to single digits or

a group of single units. That is, even two-digit numbers such as 12 are thought of as

a group of singles as opposed to a composite of tens and ones. The developmental

milestone of understanding place value is characterized as ‘bidimensional’ (or Level

3) thought in the development of the central numerical structure. This under-

standing does not typically develop until about 8 to 9 years old. The next

developmental milestone occurs around 10 to 11 years old. By then, children begin

to understand numbers as consisting of multiple dimensions that are linked via

explicit rules about numerical relations. This type of understanding is characterized

as ‘integrated bidimensional’ (or Level 4) thought.

The current study used this developmental theory as a framework to examine the

structural changes in mathematically gifted children. Analyses focused on gifted

children under 7 years old who are expected by theory to be in the process of

constructing a unidimensional conceptual numerical structure. We predicted that

gifted children’s advanced performance in mathematics is due to their earlier

integration of the counting and quantity schemas to form a central numerical

structure. Children of similar ages not identified as gifted formed a comparison

group.

Method

Participants. This study used data sets made available from two independently

conducted studies—a study of mathematically precocious young children5 and a

study of non-gifted children.6 The former study’s sample included 310 incoming
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kindergarten and first grade children who were identified as mathematically gifted.

These children were selected on the basis of scoring at the 98th percentile or above

on at least one of two measures: arithmetic subtests of the K-ABC (Kaufman &

Kaufman, 1983) and the WPPSI-R (Wechsler, 1989). The latter study’s sample

included 148 non-gifted children in kindergarten and first grade. In order to make

the two samples comparable in age, we included only those children who were

between the ages of 5 and 7 years old in the spring. The mean age of 6-years-old, or

the age range of 5 to 7 years old, corresponds to the unidimensional substage of

development in Case’s theory. This resulted in 128 mathematically gifted children

and 129 non-gifted children. Mathematically gifted children were tested once in late

summer to fall and once again in the spring (approximately eight months later).

Their mean ages were 5.5 years (SD5.31) in the fall and 6.1 years (SD5.32) in the

spring. A group of non-gifted children was tested once in the spring; their mean age

was 6.4 years (SD5.42).

Measures and procedures. Of the various measures administered to children, the

number knowledge task mentioned in Study 1 was of interest in this study. This task

has gone through several revisions and the gifted and non-gifted studies used

different versions of the measure. For the purpose of conducting structural analyses,

we included items that were given to both groups of children. Their performance on

the full scale is also provided for comparison purposes.

The target items came from the unidimensional substage (Level 2) of the number

knowledge task. These items were designed to measure children’s integration of the

counting and quantity comparison schemas. Five items were included in the

analysis. These items were:

1. If you had four chocolates and someone gave you three more, how many

chocolates would you have altogether?

2(a). What number comes right after seven?

2(b). What number comes two numbers after seven?

3(a). Which is bigger: five or four?

3(b). Which is bigger: seven or nine?

4(a). Which is smaller: eight or six?

4(b). Which is smaller: five or seven?

5. Which number is closer to five: six or two?7

Children had to answer correctly to both (a) and (b) questions in order to receive

one point. The maximum possible score was five.

Data analysis. The primary focus of the analysis was to examine whether or not

gifted children would undergo the integration of the counting and quantity

comparison schemas into a central numerical structure in a similar fashion to, but

at an earlier age than, typically developing children. Using structural equation

modeling procedures based on the analysis of covariance, we compared the fit of

one-factor and two-factor measurement models for the gifted data obtained in the
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fall and eight months later in the spring (see Figure 2). We also compared the fit of

the two models for the non-gifted sample of children obtained in the spring.

We used the maximum likelihood (ML) estimation procedures for these analyses.8

This method has been shown to be robust to violations of the multivariate normality

assumption (McDonald & Ho, 2002). There were no missing data to require any

form of replacement mechanism. Each measurement model was assessed for

goodness of fit using multiple criteria; these were the x2 likelihood ratio, the

Comparative Fit Index (CFI; Bentler, 1990), the Tucker-Lewis Index (TLI; Tucker

& Lewis, 1973), and the Root Mean Square Error of Approximation (RMSEA;

Browne & Cudeck, 1993).

The x2 value indicates the discrepancy between the observed covariance matrix

and that estimated by the model relative to the degrees of freedom. A non-significant

x2 value indicates a fit of the data to the model. The significance level of this absolute

index, however, is influenced by sample size. This dictates the power to find

differences. The RMSEA is also a global fit index that takes into account model

complexity (number of estimated parameters) within its calculation, favoring more

parsimonious models. An RMSEA value of 0 indicates a perfect fit. It is suggested

that RMSEA values less than .06 indicate a good fit and values less than .08

correspond with acceptable fit. Values beyond .08 suggest mediocre model fit (Hu &

Bentler, 1999). The TLI is an incremental fit indicator that was initially developed

for the purposes of comparing models of a factor analysis (Tucker & Lewis, 1973).

This type-2 fit index typically ranges from 0 to 1 but can fall outside this range.

Higher values indicate better fit. It has been considered convention for TLI values

greater than .90 to show an acceptable fit. More stringent guidelines are proposed

from simulation analyses that suggest TLI values greater than .95 to indicate an

Figure 2. Measurement models to be tested: (a) two-factor model depicting two separate

schemata, and (b) one-factor model depicting an integrated central numerical structure
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acceptable fit (Hu & Bentler, 1999). The CFI is also an incremental fit index that

rescales the x2 value to range from 0 (no fit) to 1 (perfect fit) while adjusting for

sample size. This type-3 indicator compares the specified factor model to a null

model in which each observed variable is considered a separate factor. CFI values

greater than .95 indicate a relatively good fit (Hu & Bentler, 1999).

Results

Overall performance on the number knowledge task. As mentioned earlier, the two

studies used different versions of the number knowledge task. The gifted study used

a full version of the scale with a total of 36 items that assessed children’s conceptual

understanding from predimensional to the level beyond integrated bidimensional

thought. The non-gifted study, on the other hand, used a short version of the scale

with only 13 items covering predimensional to bidimensional thought. Our

comparison of overall performance was therefore based on children’s performance

on the predimensional to bidimensional level items. Although this approach

underestimated gifted children’s actual performance, we found a large difference

in children’s spring performance on this task. The mean scores (standard deviation)

for gifted children were 2.01 (.62) in the fall and 2.45 (.73) in the spring. It was 2.14

(.58) for non-gifted children in the spring. At the end of the school year, gifted

children were roughly one year ahead of their non-gifted peers.

Integration of the counting and quantity schemas to a central numerical structure. The

target items used for structural analyses were drawn from the unidimensional level.

Children’s performance on these items is listed in Table 3. Gifted children’s

performance in the spring was near perfect on these items with tighter standard

deviations than those of non-gifted children. The comparisons of gifted and non-

gifted children’s performance on these items confirmed statistically significant

differences in favor of gifted children, t(255)53.83, p,.001, for the spring

comparison (i.e., same testing time). We found through close inspection of

performance differences between counting items and quantity items that children

tended to do better on the quantity items (Table 4). This analysis also revealed that

by spring gifted children did equally well on counting and quantity items whereas

non-gifted children showed a discrepancy between the two types of items.

Table 3. Means (standard deviations) for the target items by group and testing time

Item Gifted fall Gifted spring Non-gifted spring

3 more than 4 .73 (.45) .89 (.31) .74 (.44)

1 & 2 after 7 .88 (.33) .94 (.24) .64 (.48)

Bigger .92 (.27) .95 (.21) .95 (.23)

Smaller .93 (.26) .94 (.24) .91 (.29)

Closer .88 (.32) .91 (.29) .88 (.32)

Total 4.34 (1.19) 4.63 (1.12) 4.12 (1.01)
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The data on the five items were used to examine the fit of one-factor and two-

factor models. The covariance matrices, which served as the basis for the ML

estimation, are presented in Tables 5 and 6. Preliminary analyses indicated some

negative skew and positive kurtosis. Although the maximum likelihood method has

been shown to be robust and relatively unaffected by violations of multivariate

normality, we noted the potential for conservatively biased standard error terms.

Results from the factor analysis on the gifted fall data showed a good fit for

both one-factor and two-factor models. Fit indices for a two-factor solution were a x2

(4, N5128)52.433, p5.657, RMSEA,.001, CFI51.00, TLI51.020. These

statistics indicated a very good fit. In comparison, the single-factor model

demonstrated a good but slightly less favorable fit than the two-factor model, x2

(5, N5128)54.492, p5.481, RMSEA,.001, CFI51.00, TLI51.005. An examina-

tion of the estimated correlation between the two factors in the two-factor model

found a high correlation between the two factors (r5.851). Taken together, these

Table 4. Proportions of correct responses items for counting schema, quantity schema and total

by group and testing time

Item type Gifted fall Gifted spring Non-gifted spring

Counting .801 .914 .690

Quantity .911 .932 .912

Total .867 .925 .823

Table 5. Covariance matrices of the five items for the gifted sample at pre-test (below diagonal)

and at post-test (above diagonal)

Item 1 2 3 4 5

1. 3 more than 4 — .048 .042 .048 .045

2. 1 & 2 after 7 .052 — .044 .051 .041

3. Bigger .034 .045 — .044 .043

4. Smaller .044 .046 .050 — .041

5. Closer .039 .040 .038 .039 —

Table 6. Covariance matrix of the five items for the non-gifted sample

Item 1 2 3 4 5

1. 3 more than 4 —

2. 1 & 2 after 7 .038 —

3. Bigger .017 .020 —

4. Smaller .014 .013 .034 —

5. Closer .000 2.011 .017 .036 —
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results suggest that prior to the age of 6-years-old, gifted children were on the path to

integrating the counting and quantity schemas. Factor loadings for both models are

presented in Table 7.

At the end of the school year, gifted children’s data showed the two-factor model’s

fit indices of x2 (4, N5128)513.318, p5.010, RMSEA5.135, CFI5.982,

TLI5.955. The estimated correlation between the two factors was near perfect

(r5.998). The single-factor model’s fit indices were x2 (5, N5128)513.323,

p5.021, RMSEA5.114, CFI5.984, TLI5.968. These suggest a more acceptable fit

for a one-factor than two-factor solution.

As for the non-gifted sample, fit indices for a two-factor solution were, x2 (4,

N5129)55.962, p5.202, RMSEA5.062, CFI5.969, TLI5.922. The estimated

correlation between the two factors was r5.310. The fit indices for a one-factor

solution were x2 (5, N5129)59.436, p,.093, RMSEA5.083, CFI5.929,

TLI5.858. Although the x2 value was non-significant for both solutions, the other

indices showed a drop in fit from good fit in the two-factor solution to a mediocre fit

based on RMSEA and an unacceptable fit based on TLI in the one-factor solution.

Discussion

The primary interest of this study was to examine if mathematically gifted children

achieved a conceptual integration of the counting and quantity schemas earlier than

expected of their age peers. The current study found that gifted children under 6-

years-old already showed signs of this integration and, eight months later, the

development of the central numerical structure appeared to be in place. In

comparison, non-gifted children 6-years-old were still in the process of integrating

the two schemas. These differences in the rate of development in the mathematical

domain explain superior performance of gifted children on various cognitive tests in

the quantitative domain.

The current study also helped explain earlier findings by Robinson et al. (1996)

who reported a clear distinction between quantitative and verbal abilities but a close

Table 7. Standardized factor loadings (regression weights) for two-factor and single-factor

solutions

Item

Gifted fall Gifted spring Non-gifted spring

CNS Count Quant. CNS Count Quant. CNS Count Quant.

3 more than 4 .424 .479 .684 .685 .152 .458

1 & 2 after 7 .634 .733 .924 .925 .132 .391

Bigger .804 .806 .936 .936 .604 .591

Smaller .880 .884 .924 .924 .854 .872

Closer .547 .545 .672 .672 .430 .428

2 factor r .851 .998 .310
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association of quantitative to visual–spatial abilities among mathematically

precocious young children. The current study used Case’s theory that explained

the close relation between quantitative and visual–spatial abilities as the root of later

conceptual development in the mathematical domain. That is, an important

conceptual development begins with children’s understanding of counting (numer-

ical) and quantity comparisons (visual–spatial), which are later integrated to become

a unidimensional central numerical structure. This new structure no longer requires

a heavy reliance on visual–spatial ability. Rather, it allows children to carry out

numerical reasoning on the basis of numerical magnitudes. The current results from

mathematically gifted children at two different times support this theoretical analysis

by showing that the two-factor solution prior to 6-years-old and the one-factor

solution eight months later can describe the development of their conceptual

structure in the quantitative domain.

General discussion

In this paper, we examined mathematical precocity in young children from a neo-

Piagetian perspective. Two aspects of mathematical precocity were addressed in two

separate studies. The first study examined mathematically gifted young children’s

working memory. The second study explored the conceptual integration of counting

and quantity comparison schemas. The main findings from these studies were that

mathematically gifted young children showed an earlier integration of important

understandings in the numerical domain than did their age peers; the rate of

development of working memory, however, was not different from their age peers.

In interpreting these findings, two interrelated ideas from Case’s (1996) theory are

particularly important. One is the distinction between domain-general and domain-

specific development; and the other is the role of working memory in conceptual

development. Case (1992; Case & Okamoto, 1996) postulated the notion of central

conceptual structures as domain-specific semantic networks that consist of a unique

set of meanings and rules. Therefore, conceptual growth is viewed as taking place in

individual domains. That is, children could excel in one domain but not necessarily

in others. However, system-wide constraints, such as working memory, set upper-

limits on the rate of development across domains. Viewed from this perspective, it is

reasonable to suggest that gifted and non-gifted children do not necessarily differ in

their working memory capacity.

Case (1996) also stated that an increase in working memory capacity facilitates the

acquisition of central conceptual structures, but not vice versa. If this assertion is

correct, mathematically gifted children’s advantages are less likely to arise from

advanced working memory. Rather, their advantages are likely to result from how

they use available working memory capacity to their advantage. We speculate that

gifted children quickly develop efficient strategies to solve problems. Our data

confirm that when their ability to generate efficient strategies is limited, gifted

children do not demonstrate greater working memory capacity. Although a small

sample size limits our ability to assert conclusive statements, this seems consistent
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with those who argue that deliberate practice (Ericsson, 2003; Ericsson et al., 2005)

may underlie intellectual advantages for gifted children. Case (1996) also stated that

effective instruction in a particular domain facilitates children’s conceptual

development in that domain. Perhaps gifted children benefit from intellectual

stimuli that serve as though they were receiving deliberate instruction. It may also be

that gifted children’s ability to rapidly devise efficient strategies allows them to focus

on features of tasks at hand that must be highlighted for successful problem solving.

This position, however, does not necessarily negate the idea of initial differences in

brain organization between gifted and non-gifted children (O’Boyle et al., 1991,

1994). It is possible that gifted children are born with atypical brain organization

that allows them to benefit more from deliberate practice than those without such

brain organization. A deeper understanding of gifted children’s brain organization

and strategy development is needed if educators are going to be able to capitalize on

their early development of complex conceptual structures.

The current findings clearly point out the importance of examining gifted

children’s strategies. Without this focus, it is difficult to reconcile controversial

findings where gifted children have sometimes demonstrated advantages over same

age peers (Schofield & Ashman, 1987; Segalowitz et al., 1992; Saccuzzo et al.,

1994), but other times have not (Globerson, 1985; Porath, 1992, 1996, 1997).

Siegler’s (2004) use of microgenetic methods and other approaches that look closely

and carefully at what children do as they solve intellectual problems have the

potential to enrich our understandings of conceptual development. These methods

provide ‘high density observations of learning’ (Siegler, 2004, p. 364), which may be

useful in understanding what strategies gifted children use in educational settings

and how they are able to develop such highly efficient strategies when their age peers

are not. Taken together with research demonstrating that children can benefit from

explicit strategy instruction (Tournaki, 2003; Torbeyns et al., 2005), we suggest

gifted children’s strategy development as a productive area of research, having

theoretical implications for understanding characteristics of giftedness as well as

practical implications for designing effective instruction for non-gifted children’s

development of efficient strategies.

Finally, the current paper highlighted the importance of examining structural

changes in mathematically gifted children’s conceptual development. Using Case’s

theory, we examined how gifted children’s counting and quantity schemas are

integrated to become a unified conceptual numerical structure. The current data

showed that this integration takes place in gifted children roughly one year ahead of

their age peers. An interesting aspect of this finding is the relation between counting

(numerical) and quantity comparison (visual–spatial) schemas that are typically

assembled prior to 5-years-old. The counting schema is presumed to have its origins

in children’s numerical discrimination and later physical counting, and the quantity

comparison schema in children’s visual–spatial abilities (Starkey et al., 1990; Curtis,

2003). When these two schemas are integrated, children assemble a central

numerical structure that takes numbers as the objects of mental manipulations

(Okamoto, 1996). This structure relies considerably less on visual–spatial ability.
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That is, the numerical domain becomes more clearly distinguishable from the

visual–spatial domain of knowledge. Mathematically gifted children’s earlier

integration of the two schemas appears to contribute to the development of

specialized ability in the numerical domain. Recent studies of brain imaging during

simple calculation, however, point out the possibility of overlap between numerosity

and visual–spatial working memory (see for example, Simon et al., 2004). Continued

effort by researchers is necessary to untangle relations between numerical and

visual–spatial abilities, domain-specific and domain-general development, and mind

and brain in gifted and non-gifted children.
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Notes

1. This is equivalent to Case’s ‘central conceptual structure in the numerical domain’. Central

conceptual structures are domain-specific in content but at the same time subject to system-

wide constraints.

2. These measures require that participants carry out an action while trying to memorize target

numbers or spatial layouts.

3. This system is typically described in Case’s theory as consisting of four levels or sugstages:

predimensional, undimensional, bidimensional and integrated bidimensional substages. These

correspond to Levels 1 through 4, respectively.

4. This level is referred to as vectorial and includes rational numbers and negative numbers.

5. The gifted children participated in Project Math Trek (see Robinson et al., 1996).

6. These children participated in the Case project (see Case & Okamoto, 1996).

7. Item 5 should have included two sub-items. However, a single item of this type was

administered in the non-gifted study.

8. Because our items are dichotomous, the data lend themselves to violations of normality.

Various methods have been developed to estimate from such data, for example, the categorical

variable methodology (Muthén, 1984) and the asymptotically distribution-free (ADF)

estimator (Browne, 1984). However, these estimation methods require a much larger sample

size. We thus used the ML method.
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