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Despite over a century of research, psychologists have still not established scientific
talent as an empirically demonstrable phenomenon. To help solve this problem, a talent
definition was first proposed that provided the basis for three quantitative estimators of
criterion heritability that can be applied to meta-analytic and behavior genetic research
concerning the intellectual and personality predictors of scientific training and perfor-
mance. After specifying the ideal data requirements for the application of the three
estimators, the procedures were applied to previously published results. Personality
traits were illustrated with the use of the California Psychological Inventory and the
Eysenck Personality Questionnaire with respect to two criteria (scientists versus non-
scientists and creative scientists versus less creative scientists) and intellectual traits
with the use of the Miller Analogies Test with respect to seven criteria (graduate
grade-point average, faculty ratings, comprehensive examination scores, degree attain-
ment, research productivity, etc.). The outcome provides approximate, lower-bound
estimates of the genetic contribution to scientific training and performance. Subsequent
discussion concerns what future research is necessary for a more complete understand-
ing of scientific talent as an empirical phenomenon.

Keywords: scientific talent, intellect, personality, criterion heritability

Roger D. Kornberg received the 2006 No-
bel Prize in Physiology or Medicine, an honor
previously bestowed upon his father, Arthur
Kornberg, in 1959. Not only has this father–
son pairing occurred six times since the ad-
vent of the Nobel prizes in 1901, but this
award has also been conferred on one moth-
er– daughter pair, one brother– brother pair,
and one uncle–nephew pair (Nobel Laureates

Facts, n.d.). Moreover, only once out of these
nine occasions was the prize received for the
same achievement (viz., the father and son
Braggs in 1915). Yet this prestigious honor
has an extremely low base rate. The over-
whelming majority of even the most distin-
guished scientists are never acknowledged
with this premiere distinction. So the odds of
two family members receiving the same prize
would seem infinitely miniscule. Conse-
quently, it seems reasonable to ask: To what
extent are high-impact scientists born rather
than made? What are the relative contribu-
tions of nature and nurture to the emergence
of scientific achievement?

This issue was first addressed by Francis Gal-
ton in his 1869 Hereditary Genius. Galton
showed that renowned scientists tended to have
eminent biological relatives at a rate that far
exceeded statistical expectation. Furthermore,
the probability of a familial connection corre-
sponded with the degree of kinship. Fathers,
brothers, and sons are much more frequent than
grandfathers, uncles, nephews, and grandsons,
and the latter relations are in turn more frequent
than great-grandfathers, great-uncles, first cous-
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ins, great-nephews, and great-grandsons.1 On
the basis of these and other pedigrees, Galton
concluded that creative genius, scientific or oth-
erwise, was determined at birth. Such a presti-
gious scientific pedigree even holds for Gal-
ton’s own lineage. His blood relations included
his grandfather Erasmus Darwin, his cousin
Charles Darwin, and, more distantly, the latter’s
scientifically eminent sons, namely, Francis, the
botanist, Leonard, the eugenist, and Sir George,
the physicist—and, even more remotely, to the
latter’s son, the physicist Sir Charles Galton
Darwin.

Galton’s (1869) extreme biological determin-
ism elicited criticism almost at once. The first
major counterargument was presented by Al-
phonse de Candolle (1873), a scientist who,
ironically, Galton had explicitly named as com-
ing from a distinguished scientific family. De-
spite being the son of an illustrious scientist,
Candolle showed that outstanding scientists are
very much the product of specific political, eco-
nomic, cultural, and educational environments.
Candolle’s research inspired Galton (1874) to
examine some potential environmental factors
in a survey of Fellows of the Royal Society of
London (Hilts, 1975). The results were pub-
lished in English Men of Science: Their Nature
and Nurture. The subtitle implies that Galton
had backed off a little from his extreme posi-
tion, allowing some latitude for the input of
various environmental influences. In line with
this concession, he specifically examined the
impact of family background, formal education,
and geography on the emergence of prominent
scientists.

Unfortunately, the empirical research since
Galton’s day has made little headway toward
understanding the extent to which creative
achievement in science has some foundation in
natural endowment. Indeed, several psycholo-
gists have gone so far as to cast doubt on
whether talent of any kind really exists (e.g.,
Ericsson, Roring, & Nandagopal, 2007; Howe,
Davidson, & Sloboda, 1998). A prominent ex-
ample is Howe’s (1999) book Genius Ex-
plained. After devoting several chapters to scru-
tinizing the lives of such noted scientists as
Michael Faraday, Charles Darwin, Albert Ein-
stein, and other supposed scientific talents,
Howe concluded with the chapter entitled
“Born to be a genius?,” in which he claimed that
the answer to the question posed by the title is

clearly negative. Similarly, Sawyer (2006), in
his book Explaining Creativity, examined gen-
eral creative talent and explicitly asserted “We
can’t look to genetics for the explanation of
creativity” (p. 94). Furthermore, these negative
conclusions are said to follow directly from
relevant research in behavior genetics. For in-
stance, Sawyer reviewed three investigations
that allegedly disconfirm the role of genetic
endowment in any form of creative achieve-
ment (viz., Barron, 1972; Reznikoff, Domino,
Bridges, & Honeyman, 1973; Vandenberg,
Stafford, & Brown, 1968).2 Likewise, Ericsson,
Roring, and Nandagopal (2007) cited two be-
havior genetic investigations in drawing the
same conclusion about talent in general (viz.,
Bouchard & Lykken, 1999; Klissouras et al.,
2001).

In fact, Ericsson, Roring, and Nandagopal
(2007) went so far as to question whether be-
havior genetics can ever establish the case for
talent in any domain of high-level achievement.
After all, behavior geneticists rely heavily on
the study of twins—especially monozygotic
twins reared apart (MZA). That reliance ensues
from the convention that the MZA intraclass
correlation for any trait provides a direct esti-
mate of the trait’s heritability. Not only are
MZAs relatively rare, but twins of any type may
even be underrepresented among high-achiev-
ing adults (Goertzel, Goertzel, & Goertzel,
1978). If we add to the calculation the fact that
only a small proportion of the population ex-
hibits exceptional talent, then it would seem
impossible to obtain MZA samples of sufficient
size to support conclusive results. This argu-
ment certainly applies to scientific talent. For
instance, a comprehensive longitudinal study of
the mathematically precocious (Lubinski,
Webb, Morelock, & Benbow, 2001) has ex-
tremely few twins in the sample (D. Lubinski,
personal communication, March 15, 2007). Si-
monton’s (1991a) study of 2,026 eminent sci-

1These terms are all for male relatives in part because few
eminent female scientists existed in Galton’s (1869) day. A
notable exception was the astronomer Caroline Herschel,
sister of astronomer Sir William Herschel and aunt of as-
tronomer and physicist Sir John Herschel.

2 More accurately, Sawyer (2006) cited “Vandenberg,
1968,” the volume editor, rather than the single chapter in
the volume that actually conducted the study (viz., Vanden-
berg, Stafford, & Brown, 1968).
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entists contained only one twin (Auguste
Picard). And, needless to say, there are no
twins, monozygotic or dizygotic, among Nobel
laureates in the sciences. Thus, not only may we
lack direct evidence for scientific talent, but also
it may never be possible to establish such sub-
stantiation with the use of standard behavior
genetic methods.

Nevertheless, it is conceivable that indirect
but still convincing support may be derived
from two distinct sets of empirical findings.
First, differential psychologists have shown that
certain intellectual and personality variables
tend to predict creative achievement, including
achievement in the sciences (Feist, 1998; Sim-
onton, 2004). Second, almost all individual-
difference variables feature substantial herita-
bilities (e.g., Bouchard, 1994; Bouchard,
Lykken, McGue, Segal, & Tellegen, 1990). To
the degree that these two sets of variables over-
lap, a logical and empirical basis has been es-
tablished for the existence of scientific talent.
Specifically, if a genotypic trait provides some
basis for a phenotypic trait, and if the latter trait
predicts variation in scientific achievement,
then the latter must have some genetic founda-
tion. For example, Bouchard and Lykken
(1999) demonstrated that the personality char-
acteristics associated with scientific productiv-
ity display heritabilities ranging between .32
and .57, meaning that between 32% and 57% of
the variance in those traits can be attributed to
genetic endowment. Similarly, the Creativity
Personality Scale (CPS) of the Adjective Check
List (ACL) not only predicts scientific creativity
(Gough, 1979) but also has a heritability of .54
(Bouchard & Lykken, 1999; Waller, Bouchard,
Lykken, Tellegen, & Blacker, 1993). Hence,
54% of the variance in the CPS has a genetic
contribution. Moreover, because predictive va-
lidities are known for this measure, we can draw
a more powerful inference. For instance, CPS
scores correlated .31 with the creativity ratings
that expert judges assigned 57 mathematicians
(Gough, 1979). This signifies that almost 10%
of the variance in that criterion can be attributed
to CPS (i.e., .312 � .096). Multiplying the
squared criterion–trait correlation by the herita-
bility coefficient then yields .052, which implies
that over 5% of the variance in the rated cre-
ativity of these mathematicians might be as-
cribed to the genetic part of the CPS scores.

Naturally, matters can become more compli-
cated when we have to take into consideration
the full inventory of inheritable individual-
difference variables that also correlate with
some measure of scientific achievement. Ac-
cordingly, the principal goal of this article is to
develop and illustrate objective and precise pro-
cedures for estimating the overall contribution
of genetic endowment to scientific achievement.
But before that task can begin it is first neces-
sary to define exactly what we mean by talent.3

Talent Definition

An extensive literature has amply demon-
strated that exceptional achievement depends
on the acquisition of domain-specific expertise
(Ericsson, Charness, Feltovich, & Hoffman,
2006). This mastery does not come immediately
but rather must be the product of concentrated
effort, such as deliberate practice (Ericsson,
Krampe, & Tesch-Römer, 1993). One manifes-
tation of this requirement is the 10-year rule
that asserts a full decade of intensive training
and practice is usually required before an indi-
vidual attains world-class mastery of a given
domain of expertise (Ericsson, 1996). Too of-
ten, this dependence on an experiential factor is
juxtaposed to the operation of innate talent or
genius (e.g., Howe, 1999). Supposedly, the
more achievement in science or other domains
is contingent on accumulated domain-specific
knowledge and skill, then the less important
must be the role of natural endowment. Yet this
conception of nature and nurture as being mu-
tually exclusive is unnecessary and illogical.

3 One anonymous referee also requested definitions of
achievement, eminence, genius, and creativity because they
sometimes seem to be used interchangeably. Here these
constructs are considered to be overlapping but not identi-
cal. A person can achieve in almost any domain, such as
scientific or artistic creativity, political or military leader-
ship, individual or team sports, chess competition or musi-
cal performance, cooking or gardening. Truly exceptional
achievement in a particular domain typically results in the
attainment of eminence within that domain (e.g., Nobel
laureate, an Olympic gold medalist, or a critically acclaimed
violin virtuoso). However, the term genius is most often
confined to eminence achieved within domains requiring
either creativity or leadership (e.g., literary genius or mili-
tary genius). And scientific genius is principally contingent
on the demonstration of extraordinary creativity in science
(i.e., the contribution of ideas recognized as both original
and useful; see Simonton, 2000).
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Rather than define talent as a mysterious phe-
nomenon that operates independently of do-
main-specific expertise, talent is best conceived
as a process that openly involves that expertise
(Simonton, 1999, 2005). In different terms, sci-
entific achievement is not a matter of either
talent or training but rather a matter of talent
operating in the context of that training. To be
specific, scientific talent can be defined as any
feature of natural endowment that has one or
both of the following two effects.

First, talent enhances training. At the mini-
mum level, training may be enhanced insofar as
an individual has the personal characteristics
required to engage in the arduous learning and
practice necessary to reach mastery of a given
scientific domain. For instance, a distinctive
profile of personality, interests, and values may
influence how much effort a student is willing to
devote to doing exercises and problem sets in
advanced physics courses. These traits may in-
clude high conscientiousness, extreme introver-
sion, and an orientation toward “things” rather
than “people” (Feist, 2006a). Yet enhanced
training may also mean that a given individual
(a) attains a higher level of domain-specific
expertise for a given unit of training or (b)
masters the requisite domain-specific knowl-
edge and skill in less training time than average.
The latter possibility is suggested by a key
empirical finding with respect to creative
achievement: Although the 10-year rule holds
as a rough average, the generalization is quali-
fied by considerable individual differences,
some persons taking more time and other less
(Simonton, 1996). Significantly, those individ-
uals who take less than 10 years are more likely
to display higher levels of creative productivity
and more long-term impact than those who take
more than 10 years (e.g., Simonton, 1991a,
1991b, 1992). Hence, some portion of this train-
ing enhancement may very likely reflect cross-
sectional variation in native endowment.

Second, talent enhances performance. En-
hanced performance indicates that an individual
with a given amount of expertise will exhibit a
higher level of scientific output or impact than
other individuals with the same level of accu-
mulated expertise. As a case in point, creative
contributors to a particular discipline tend to
display traits that differentiate them from those
who solely exhibit domain-specific expertise in
same discipline (Rostan, 1994). An example is

Openness to Experience, a Big-Five factor that
is positively associated with creativity (Harris,
2004; McCrae, 1987). Openness most likely
makes direct contributions to the creative pro-
cess underlying discovery and invention in the
sciences. For instance, Openness is positively
associated with both divergent thinking (Mc-
Crae, 1987) and reduced latent inhibition
(Peterson & Carson, 2000; Peterson, Smith, &
Carson, 2002). Divergent thinking enables the
person to conceive alternative perspectives on a
problem while reduced latent inhibition allows
an individual to be sensitive to seemingly unre-
lated cues to the solution of a problem (Simon-
ton, 2003). In fact, diminished cognitive filter-
ing should facilitate the “opportunistic assimi-
lation” of stimuli during the incubation period
of the creative process (Seifert, Meyer, David-
son, Patalano, & Yaniv, 1995).

In general, training enhancement largely con-
cerns the development of scientific talent in
childhood through early adulthood, whereas the
performance enhancement mostly concerns the
manifestation of that talent through the course
of the adulthood career. The former involves the
acquisition of expertise, the latter the realization
of that expertise in the form of recognized cre-
ative products. Three additional attributes of
this twofold definition require special emphasis:

1. It is extremely unlikely that endowment
constitutes a homogeneous psychological
capacity. A person is certainly not born
with a diffuse “gift” for science. Instead,
the natural endowment most likely con-
sists of a weighted composite of numerous
and highly specific intellectual and per-
sonality characteristics (Simonton, 1999).
Intellectual traits concern abilities and ap-
titudes, whereas personality traits concern
tendencies, inclinations, interests, mo-
tives, and values. The former pertain to
what persons can do, the latter to what
persons generally do (Chamorro-Pre-
muzic & Furnham, 2006). Thus, verbal
reasoning is an intellectual trait, introver-
sion a personality trait. Research going
back as far as Cox (1926) has shown that
personality traits can be every bit as im-
portant if not more important than intel-
lectual traits in the prediction of high
achievement (see also Cattell & Butcher,
1968; Feist & Barron, 2003). Cox was
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also the first to demonstrate that a distinc-
tive profile of traits are characteristic of
each major domain of achievement (see
also Raskin, 1936; Terman, 1954).

2. The endowed traits that enhance training
need not be identical to those that enhance
performance, albeit some overlap will
likely exist between the two sets of traits.
For example, general intelligence might
make comparable contributions to both
training and performance, whereas Open-
ness to Experience might contribute much
more to performance than to training. In-
deed, Openness could even have a nega-
tive impact on training insofar as it dis-
tracts a student from specializing on a
very narrow set of domain-specific knowl-
edge and skills. One general repercussion
of this differential impact is that the par-
ticular composition of a talent may shift
over time, the traits affecting expertise
acquisition differing somewhat from those
that influence the realization of that exper-
tise.

3. Natural endowment, whether intellectual
or personality, may be either genetic or
nongenetic. The genetic traits involve the
direct transmission of genes from parents
to offspring. As a consequence, such traits
have nonzero heritability coefficients,
where heritability is defined as the propor-
tion of phenotypic variance in a popula-
tion that can be attributed to genetic vari-
ance in that population (Falconer, 1989).
Nongenetic endowment is any intellectual
or personality trait present at birth that can
be ascribed to some other developmental
process. For instance, inborn characteris-
tics that result from the intrauterine envi-
ronment during pregnancy would be con-
sidered of this nature (McManus & Bry-
den, 1991). Specifically, to some
undetermined extent talent in the mathe-
matical sciences may be founded on non-
genetic natural endowment (Benbow,
1987).

Although it is possible that nongenetic en-
dowment can account for some features of sci-
entific talent, this article will focus attention on
genetic traits. The reason for focusing on ge-

netic endowment is that it enables us to use
research findings in behavior genetics to derive
quantitative measures for gauging the magni-
tude of scientific talent.

Quantitative Measures

Suppose that a given criterion of scientific
training or performance can be predicted with
the use of a specific set of intellectual and
personality traits, where k represents the num-
ber of predictive traits. The predictive value of
these traits is indicated by a set of criterion–trait
correlations or standardized partial regression
coefficients. Let us also assume that each of
these predictor variables has a corresponding
heritability that specifies the proportion of the
variance in that variable that can be attributed to
genetic variance. From this information we
want to create an estimate of the total heritabil-
ity of the criterion. This can be called the cri-
terion heritability, or hc

2 (0 � hc � 1). It turns
out that it is possible to suggest at least three
possible estimators. The first is defined by the
following formula:

hc1
2 � �rcj

2hj
2, (1)

where rcj
2 is the square of the criterion–trait

correlation for trait j, hj
2 is the heritability of

trait j, and the product of these two statistics is
summed across all k traits. The rationale for this
estimator is based on the fact that rcj

2 indicates
the proportion of variance in the criterion than
can be explained by trait j. Because hj

2 specifies
the proportion of variance in trait j that can be
explained by genetic endowment, then the prod-
uct of the two gives the proportion of variance
in the criterion that might be attributed to ge-
netic variation. In effect, this was the formula
used earlier in this article to estimate the genetic
portion of the variance in the creativity ratings
of mathematicians that can be attributed to CPS
scores (where k � 1).

This first estimator makes an implicit as-
sumption: The k predictor traits are all uncorre-
lated with each other. This condition would
hold if the k traits were defined by principal
components or by factor scores generated from
an orthogonal rotation (using an algorithm that
preserves factor orthogonality). Nonetheless,
this assumption may often be too restrictive.
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Even scales derived from orthogonal factor
analyses will tend to be correlated (e.g., the
dimensions making up the Big Five; Ilies, Ger-
hardt, & Le, 2004). Shared variance among the
predictors implies that the squared criterion–
trait correlation rcj

2 will not represent the pro-
portion of variance explained by the jth trait.
Most commonly the statistic will be an overes-
timate, in which case hc1

2 will also overestimate
criterion heritability. One solution to this prob-
lem is to select only those criterion–trait corre-
lates that are relatively orthogonal. By reducing
the overlapping variance among the predictor
traits hc1

2 will become a less biased estimate.
Another solution would be to take advantage

of multiple regression analyses that calculate
the criterion-predictor associations for each
item while partialling out the effects of the other
items in the equation. Consistent with this tactic
is the estimator that Ilies, Gerhardt, and Le
(2004) suggested based on a simple path-
analytic model, namely,

hc2
2 � ��cj

2hj
2, (2)

where (a) �cj is the standardized partial regres-
sion coefficient obtained by regressing criterion
c on the k predictor traits and (b) the summation
is applied across k traits (i.e., j � 1, 2, 3, ..., k).
The square of this coefficient is then multiplied
by the corresponding heritability. Given that
this coefficient is usually smaller than the cor-
relation between the same two variables (i.e.,
�cj

2 � rcj
2), this estimator will be most often

smaller than the first (i.e., hc2
2 � hc1

2). Hence,
it will be less likely to have a positive bias.

The estimate given by Equation 2 does have
one drawback, however, in that it has no upper
bound. As a consequence, it is difficult to de-
termine whether or not the genetic contribution
is substantial, especially relative to the total
predictability of the criterion. This disadvantage
is the rationale for introducing a third estimator.
This one is based on the squared multiple cor-
relation Rc

2 between criterion c and the k pre-
dictor traits. This statistic indicates the propor-
tion of variance in the criterion than can be
explained by the k predictors, adjusting for the
shared variance among those predictors. The
squared multiple correlation is equal to the sum
of the product of the criterion–trait correlations
and the corresponding standardized partial re-
gression coefficients; that is, Rc

2 � rcj �cj. As

such, each term in the summation can be con-
sidered the increment that each trait j contrib-
utes to the total predicted variance. Therefore,
each term can be multiplied by its respective
heritability coefficient to estimate that portion
of the explained variance that can be said to
have a genetic basis. To be specific,

hc3
2 � � rcj �cjhj

2, (2)

where once more the sum is executed across k
traits (i.e., j � 1, 2, 3, ..., k). It should be evident
that this estimator has the squared multiple cor-
relation as the upper bound (i.e., hc3

2 � Rc
2).

Hence, the ratio hc3
2/Rc

2 provides an estimate of
the proportion of the explained variance in the
criterion that might be ascribed to genetic influ-
ence. This ratio can thus provide a useful eval-
uative statistic beyond the information provided
by hc3. In effect, hc3

2/Rc
2 defines a weighted

average of the heritabilities of the k traits that
explain or predict the criterion c, the weights
reflecting the contribution that each trait makes
to that explanation or prediction.

The last two estimators, hc2
2 and hc3

2, are
based on two critical assumptions. First, these
estimators assume knowledge of the standard-
ized partial regression coefficients. Without the
�cjs the investigator has no other recourse but to
use the rcjs in Equation 1. Yet this assumption is
not problematic if the researcher knows the
criterion–trait correlations and the intertrait cor-
relations because these correlations suffice to
obtain least-squares estimates. Most computer
programs that execute multiple regression anal-
ysis will permit the input of these correlations in
lieu of the raw data. Alternatively, the coeffi-
cients can be obtained by the direct mathemat-
ical manipulation of the correlations with the
use of basic matrix algebra.4

The second assumption for the implementa-
tion of these estimators is that there are no
“suppression effects” that undermine the inter-
pretation of the terms in the two estimation
equations (Maassen & Bakker, 2001). In the
case of Equation 2, suppression can produce
standardized partial regression coefficients that

4 In formal terms, the estimator is � � rcp
’ Rpp

-1, where
� is the vector of standardized partial regression coeffi-
cients, rcp

’ is the transpose of the vector of criterion-trait
correlations, and Rpp

-1 is the inverse of the correlation
matrix for the k traits that predict the criterion.
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exceed unity (i.e., �cj � 1 for some j), and
hence the squared coefficient can also exceed
unity (i.e., �cj

2 � 1 for one or more traits). It is
therefore technically conceivable that hc2

2

might also surpass 1.0, an absurd outcome.
Even if this does not happen, it does not seem
reasonable to multiply the heritability hj

2 by a
number that exceeds unity and thereby render
the trait’s genetic contribution to criterion c
greater than the genetic contribution to trait j
itself. It must be manifest that any suppressor
that yields this outcome cannot be incorporated
into the equation that predictions criterion c, at
least not if we seek a realistic estimate of hc2

2.
For Equation 3 the problem is different,

namely, that suppression can yield a standard-
ized partial regression coefficient that has a
different sign from the criterion–trait correla-
tion coefficient on which it is based. When this
happens, the product of the two will be negative
(i.e., rcj �cj � 0 for some j), introducing a
negative term in the equation (i.e., rcj �cj hj

2 � 0
for some j). This prevents us from partitioning
the explained variance into exclusively positive
components. Because variances must always be
positive, it makes no sense to have negative
contributions to the summation.

In practice, these two repercussions of sup-
pression are often connected. Specifically, a re-
versal in sign is often associated with enlarged
rather than reduced standardized regression co-
efficients, including coefficients that are greater
than one in absolute value. Therefore, the fol-
lowing strategy can be adopted to avoid both
problems: Suppressor variables should be omit-
ted until rcj�cj � 0 for every j. To avoid the
deletion of too many predictive traits, the sup-
pressors should be dropped sequentially, and
then the �cjs re-estimated after each deletion to
determine if another suppressor must be left out.
To the extent that suppression exists in the data,
this procedure will yield conservative estimates
of criterion heritability. That is, some unspeci-
fied amount of the genetic contribution is being
ignored in order to partition the explained vari-
ance into positive components and to generate a
plausible overall estimate.

This procedure’s assumption that rcj�cj � 0
for all j can be justified on the basis of two
separate considerations. First, the most likely
expectation for a phenomenon of this type
would be that rcj and �cj have the same sign. To
find the contrary probably implies that the true

sign of the association is given by �cj, whereas
the sign of rcj reflects the impact of confounding
factors that not only obscure the underlying
association but actually reverse its direction
(Maassen & Bakker, 2001). In different terms,
the discrepant sign for rcj is spurious. Second,
suppression effects in psychometric data quite
frequently arise when assessments of the k phe-
notypic traits share variance that should most
properly belong to one or another measure (e.g.,
identical or similar items that are found in more
than one scale because of item complexity).
Accordingly, it can be argued that the assess-
ments do not represent pure measures of the
corresponding traits but rather they are contam-
inated by the common elements. For instance,
the rather high correlations that observed
among the scales of the California Psychologi-
cal Inventory (Gough, 1987) can be partly at-
tributed this problem (see, e.g., Horn, Plomin,
& Rosenman, 1976).

It should be obvious that the three estimators
given in Equations 1–3 are very closely related.
In effect, they require a trait heritability to be
multiplied by (a) a correlation coefficient
squared, (b) a regression coefficient squared, or
(c) the product of the former two coefficients
(which still yields a second-degree term). When
the trait predictors are uncorrelated, then rcj �
�cj for every trait j, and the three estimators
become equivalent (i.e., hc1

2 � hc2
2 � hc3

2).5

Still, each estimator has unique assets and def-
icits. Equation 1 can be applied in the widest
range of circumstances. It only requires knowl-
edge of criterion–trait correlations and the par-
allel heritabilities. But to the extent that the trait
measures are correlated, it will most likely yield
a positively biased estimate of criterion herita-
bility. Equations 2 and 3 solve this problem by
using the standardized partial regression coeffi-
cients, which means that the latter information
must be available, whether directly or indi-
rectly. Yet they use this additional information
in different ways. As a result, Equation 2 will

5 The close relationship among the three estimators is
becomes even more obvious when they are expressed in
matrix algebra: hc1

2 � rcp
’ Dh

2 rcp, hc2
2 � � ’ Dh

2 �, and
hc3

2 � rcp
’ Dh

2 �, where rcp
’ and � are defined as in

Footnote 4 and Dh
2 is a diagonal matrix with the heritabil-

ities along the diagonal and zero elements off the diagonal.
Whenever Rpp � I, then rcp � �, and the three expressions
become identical.
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normally yield a lower estimate than Equation 3
(because �cj

2 � rcj
2 once suppressors are omit-

ted). Finally, because only Equation 3 produces
an estimate that has a specifiable upper bound
(viz., Rc

2), it may be the preferred estimator
whenever it produces an estimate close to that
of Equation 2 (i.e., hc3

2 � hc2
2).

The best approach to assessing the relative
utility of the three quantitative measures is to
apply them to actual data. Before doing so, it is
first desirable to specify the nature of those data
for an optimal evaluation.

Data Specifications

Ideally, relevant data for the application of
the above estimators should satisfy the follow-
ing six specifications.

First, the criterion variable or variables
should be highly specific, and specific in two
distinct ways. One, training criteria should be
carefully distinguished from performance crite-
ria. As noted earlier, the correlates of the former
need not be identical to the correlates of the
latter; the gift for learning science is not iden-
tical to the gift for creating science. In fact,
different learning or performance criteria may
require a divergent mix of personal traits. Two,
the criteria should be confined to a particular
scientific discipline and even subdiscipline. The
reason for this stipulation is that the predictors
of training or performance tend to be partly
domain specific (Feist, 2006a; Simonton, 2004).
The personal qualities needed for success vary
across the physical, biological, and social sci-
ences (Busse & Mansfield, 1984; Cattell &
Drevdahl, 1955; Chambers, 1964). Even within
a more delimited domain like physics it is nec-
essary to distinguish between theoretical and
experimental physicists (Roe, 1953).

Second, the predictive traits should encom-
pass both (a) intellectual variables (e.g., general
intelligence and more specialized abilities such
as cognitive speed, verbal reasoning, and math-
ematical skills) and (b) personality variables
(e.g., motives, attitudes, values, and vocational
interests). It is especially important to include
all correlates or predictors of scientific training
or performance that are known to possess non-
trivial heritiabilities. To omit any such traits
would have the unfortunate repercussion of un-
derestimating hc

2.

Third, all of the statistics should be calculated
on the same samples or at least on samples
drawn from the same well-defined population
(see, e.g., Johnson, Vernon, Harris, & Jang,
2004). This requirement ensues from the fact
that the absolute size of a correlation coefficient
is contingent on the variances of the assessed
variables. This contingency affects the criteri-
on–trait correlations, the trait intercorrelations,
and even the heritabilities (which are, after all,
the squares of phenotype–genotype trait corre-
lations). Given this information, one can calcu-
late a value for hc

2 that is representative of that
same population. In contrast, if the various sta-
tistics come from different populations, then it
would be more difficult to identify the popula-
tion to which the estimated hc

2 applies.
Fourth, whenever necessary and achievable,

correlations and heritabilities should be cor-
rected for attenuation due to measurement error
(see, e.g., Ilies et al., 2004). For example, each
bivariate correlation can be divided by the
square root of the product of the reliability
coefficients for the two variables (e.g., corre-
sponding internal-consistency or test–retest re-
liabilities). For instance, each rcj would become
rcj (rccrjj)

-1/2, where rcc is the reliability coeffi-
cient for criterion c and rjj is the reliability
coefficient for the assessment of trait j. Like-
wise, each uncorrected heritability would be
divided by the corresponding trait reliability
(i.e., hj

2/rjj). Alternatively, all of the necessary
parameters might be derived from confirmatory
factor analyses or structural equation modeling
with latent variables. The specific origin of the
parameters matters less than the fact that the
correction has been implemented. In the ab-
sence of the adjustment for measurement error
both the criterion–trait relationships and the
trait heritabilities can be underestimated, pro-
viding a negative bias in the estimation of hc

2.
Fifth, correction for range restriction should

also be implemented whenever possible and
necessary. Truncated variance in one or both
variables in a bivariate correlation must reduce
the magnitude of the relationship (Hunter &
Schmidt, 1990). Estimates of criterion–trait cor-
relations or regression coefficients are espe-
cially susceptible to this problem. For instance,
using an intelligence measure to predict training
enhancement in graduate school must compen-
sate for the fact that only the most intelligent
applicants will even be admitted into graduate
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programs (see, e.g., Kuncel, Hezlett, & Ones,
2004).

Sixth and last, the hj
2 for each trait j should be

the broad- rather than narrow-sense heritability.
A broad-sense heritability includes both addi-
tive and nonadditive effects (due to dominance
and epistasis), whereas a narrow-sense herita-
bility only includes the additive effects (Fal-
coner, 1989). The concept of genetic endow-
ment most consistent with the talent definition
given earlier presupposes that all genetic effects
are accounted for in the calculation of hc

2. The
narrow-sense heritabilities are restricted to the
kind of familial inheritance presumed in Gal-
ton’s (1869) Hereditary Genius. Although this
may be of some interest in comprehending Gal-
ton’s findings and the Nobel pedigrees men-
tioned at the outset of this article, the broad-
based heritabilities have more extensive value.
They can better account for eminent scientists
who, like Isaac Newton, lacked any distin-
guished family lineage.

It may come as no surprise that it is abso-
lutely impossible to satisfy all of these scientific
desiderata given the current state of the empir-
ical literature.6 Even so, it is instructive to apply
the estimators to the data that are available to
obtain some rough estimates of criterion herita-
bilities.

Meta-Analytic Illustrations

To illustrate the relative utility of the three
estimators, they will be applied to two distinct
data sets. The illustration begins with personal-
ity traits and then turns to intellectual traits.7

Personality Traits

Feist (1998) compiled an exhaustive meta-
analytic review of the personality traits associ-
ated with scientific and artistic creativity. He
specifically examined the traits germane to three
criteria: scientists versus nonscientists (SvNS;
26 studies of 4,852 participants), creative versus
less creative scientists (CvLCS; 30 samples
of 3,918 participants), and artists versus nonar-
tists (39 studies of 4,397 participants). The
SvNS criterion is relevant to scientific training,
whereas the CvLCS is germane to scientific
performance. Predicting the criteria were the
scales of the California Psychological Inventory
(CPI; Gough, 1987), the Eysenck Personality

Questionnaire (EPQ; Eysenck & Eysenck,
1975), and the 16 Personality Factor Question-
naire (16PF; Cattell, Eber, & Tatsuoka, 1970).
Although Feist attempted to consolidate the di-
verse results in terms of the Five Factor Model
(e.g., Goldberg, 1993), he observed that these
five factors did not adequately differentiate the
three criteria, and so he also presented the find-
ings in terms of the original scales of the CPI,
EPQ, and 16PF. Because the meta-analytic and
behavior genetic results are far more extensive
for the CPI, I will focus on those findings to
illustrate the analytical approach, and then more
briefly treat the EPQ results. However, the 16PF
meta-analytic findings must be ignored. Not-
withstanding the availability of data for calcu-
lating both the criterion–trait correlations (Feist,
1998) and the trait intercorrelations (Cattell et
al., 1970), suitable heritability estimates have
not been published (cf. Loehlin, Horn, & Will-
erman, 1981). Happily, because the 16PF scales
share considerable variance with the CPI scales
(Campbell & Chun, 1977; Nerviano & Weitzel,
1977) it is unlikely that the following hc

2 esti-
mates will overlook much predictive genetic
variance.

CPI estimates.

Feist (1998) presented the CPI effect sizes
using Cohen’s d. These values were converted
into correlation coefficients for each phenotypic
trait j using the formula rcj � dj(dj

2 � 4)-1/2 (cf.
Hunter & Schmidt, 1990). The three vectors of
criterion-trait correlations for the three compar-

6 If all six of these conditions were met, and if no
gene-environment interaction effects existed with respect to
criterion c, then we would also obtain a new interpretation
for the quotient hc3

2/Rc
2. Not only will hc3

2/Rc
2 provide an

estimate of the proportion of explained variance in the
criterion that is attributable to genetic variation, but also (1
- hc

2)/Rc
2 offers an estimate of the proportion of explained

criterion variance the can be ascribed to environmental
variation. In short, the explained variance in the training or
performance criterion can be uniquely partitioned into na-
ture and nurture components.

7 The focus of all analyses will be on calculating point
estimates of hc

2 because there is often insufficient informa-
tion about the specific sample sizes that are required to
calculate the standard error needed to obtain interval esti-
mates (cf. Ilies, Gerhardt, & Le, 2004; Kuncel, Hezlett, &
Ones, 2004). It will take much more applicable empirical
research to get to the point that we can construct meaningful
confidence intervals around the estimators.
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isons are shown in Table 1. Following Feist,
only those CPI criterion–trait correlations are
considered for which dj � 0.49 (i.e., at least
“medium” effects). It is noteworthy that each
criterion involves a very distinct set of traits.
The variables that distinguish scientists from
nonscientists (SvNS) are not identical to those
that distinguish creative scientists from less cre-
ative scientists (CvLCS). Accordingly, the un-
derlying genotypes must also be distinctive.
This complies with Simonton’s (1999, 2005)
postulate that talent is defined in terms of sep-
arate profiles with respect to partially inherita-
ble individual-difference variables.

Table 1 also includes heritabilities taken from
Carey, Goldsmith, Tellegen, and Gottesman
(1978) based on twin data from five different
studies. The heritiabilities were calculated by
the formula hj

2 � 2(rmz – rdz), where rmz and rdz
are the average intraclass correlations for the
monozygotic and dizygotic twins, respectively.
One might argue that better heritability esti-
mates would be obtained from Horn, Plomin,
and Rosenman (1976) insofar as those research-
ers created pure CPI scales with the overlapping
items removed. Consequently, they obtained
more variable estimates, indicating that the 18
scales are differentially inherited. Even so, be-
cause the criterion–trait correlations are based
on the actual CPI scales rather than the “pure”

scales, the former estimates were deemed more
appropriate. Moreover, much of the interscale
shared variance is reduced by the procedure
adopted to calculate the standardized regression
coefficients in Equations 2 and 3.

As indicated earlier, to estimate the �cjs for
all j presumes knowledge not just of the crite-
rion–trait correlations but also of the correla-
tions among the phenotypic traits. The latter
should be based on the same samples as the
former, or at least on samples drawn from the
same population. In the absence of correlations
satisfying this standard, I will instead resort to
the scale intercorrelations reported in Gough
(1987). These are based on 1,000 males
and 1,000 females. Because males predominate
among the samples in Feist’s (1998) meta-
analysis, the male correlations alone provided
the information. Nonetheless, because the male
and female correlations are very similar, the
main results are unchanged if the latter were
used instead. It should be observed that these
correlations are probably biased upwards. The
samples used in many of the studies in Feist’s
(1998) review are likely more select than the
samples used by Gough (1987). This selectivity
is especially conspicuous for the CvLCS crite-
rion. Yet this positive bias would most likely
work against finding large estimated hc

2s.
When all zero-order correlates were included,

several suppression effects emerged owing to
the appreciable overlap among the CPI scales.
As a consequence, criterion-trait correlates were
progressively removed. The deletion began with
the correlates in which there was a sign change
between rcj and �cj, deleting first those with the
biggest quantitative discrepancies between the
two values. Removal of criterion–trait corre-
lates ceased when rcj and �cj had the same sign
for every jth trait. For example, in the case of
the SvNS criterion the specified touchstone was
quickly met once the Psychological Mindedness
scale was omitted. The other criterion, however,
required the deletion of about half of the corre-
lates. Table 1 provides the standardized partial
regression coefficients that emerged for each of
the two criteria. Without exception the stan-
dardized partial regression coefficient is the
same sign as, but smaller than, the original
criterion-item correlation (i.e., rcj � �cj). This
tells us that suppression effects have been re-
moved from the analysis so that any remaining

Table 1
California Psychological Inventory Scale
Heritabilities, Criterion–Trait Correlations, and
Standardized Partial Regression Coefficients for
Two Criteria

Scale

SvNS CvLCS

hj
2 rcj �cj rcj �cj

Dominance .56 .256
Sociability .66 .238 .079 .287 .096
Self-acceptance .56 .326 .146
Tolerance .40 .359 .217
Achievement via

conformance .30 .279 .098
Achievement via

independence .32 .335 .244 .243
Intellectual

efficiency .32 .252
Psychological

mindedness .44 .247 .243
Flexibility .40 .265 .146

Note. SvNS � scientists versus nonscientists and Cv-
LCS � creative scientists versus less creative scientists.
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shared variance among the predictors represents
mere redundancy.

The information in Table 1 is sufficient to
provide estimates of hc1

2, hc3
2, and hc2

2. The
outcome is presented in Table 2. From these
results it is evident that the criterion heritabili-
ties range widely across estimators and criteria.
Equation 1 (hc1

2), which alone uses all predictor
traits for each criterion, yields the largest esti-
mates, ranging from 12% for SvNS to 30% for
CvLCS. The estimates from Equation 2 are
much more modest, ranging from 3% to 5% for
the same criteria. Equation 3 yields estimates
much closer to those of Equation 2 but slightly
higher, namely, between 5% for SvNS and 9%
for CvLCS. Despite this variation across the
estimators, they all agree that the genetic con-
tribution to the CvLCS criterion is about double
that of the SvNS criterion.

Furthermore, the estimated genetic influence
varies greatly across the traits defining a partic-
ular criterion. Some may contribute less than
1% and others much more, depending on the
estimation equation. Yet most contributions are
relatively small—seldom more than a .10 incre-
ment, and most often less. This is also apparent
in the mean contributions of the genotypic
traits. Hence, the only reason why the total

genetic contribution can noticeably surpass a
small amount is that the total effect is summed
across three or more traits. This is an important
general principle: As k increases, the ultimate
size of hc

2 can be large even if the average sizes
of hj

2 and rcj or �cj are small. Talent is based on
the cumulative sum of the products rather than
the separate contributions.

Finally, in the case of Equation 3 one can
calculate the proportion of the total explained
variance in the criterion that might be attributed
to the genetic component. Specifically, between
37% and 48% of the explained variance might
be ascribed to genetic variation. Hence, it seems
sensible to conclude that somewhere between
one third and one half of the predicted variance
in a criterion might possibly be ascribed to
genetic influence. The remainder may represent
some combination of environmental influences
and measurement error.

The last point deserves elaboration. The re-
sults reported in Tables 1 and 2 were not cor-
rected for attenuation due to measurement er-
rors. Because Gough (1987) provided reliability
coefficients for each of his CPI scales, it would
seem possible to rectify this omission. Unfortu-
nately, the corresponding reliabilities for the
criterion variables are unavailable (Feist, 1998).
That means that although the item intercorrela-
tions can be appropriately corrected, the crite-
rion–item correlations can only be half cor-
rected, a difference that would inflate the former
relative to the latter. Given that the CPI scales
are already highly intercorrelated, this would
render the shared variance among the pheno-
typic traits even larger, and thereby create even
more severe suppression effects. Hence, the cor-
rection for attenuation was left unimplemented.
It seems reasonable to admit that the values of
hc1

2, hc2
2, and hc3

2 are underestimates, particu-
larly in the case of hc2

2 and hc3
2.

EPQ estimates.

I turn now to Feist’s (1998) meta-analysis
using the Eysenck Personality Questionnaire.
The EPQ has only three factors, one of which,
Neuroticism, does not discriminate any of the
criteria. In comparison, the Psychoticism and
Extraversion scales are both germane to the
SvNS criterion. Scientists relative to nonscien-
tists score higher on both of these scales. As in
the CPI example, the analysis begins by con-

Table 2
California Psychological Inventory Criterion
Heritability Estimation for Two Criteria

Estimator SvNS CvLCS

Equation 1
k 4 8
Minimum product (rcj

2hj
2) .0233 .0188

Maximum product (rcj
2hj

2) .0374 .0596
M (1/k � rcj

2hj
2) .0308 .0369

Sum (� rcj
2hj

2) � hc1
2 .1233 .2955

Equation 2
k 3 4
Minimum product (�cj

2hj
2) .0029 .0061

Maximum product (�cj
2hj

2) .0191 .0187
M (1/k � �cj

2hj
2) .0087 .0113

Sum (� �cj
2
hj

2) � hc2
2 .0260 .0454

Equation 3
k 3 4
Minimum product (rcj�cjhj

2) .0081 .0155
Maximum product (rcj�cjhj

2) .0262 .0311
M (1/k � rcj�cjhj

2) .0156 .0229
Sum (� rcj�cjhj

2) � hc3
2 .0467 .0915

hc
32/Rc

2 .3659 .4770

Note. SvNS � scientists versus nonscientists and Cv-
LCS � creative scientists versus less creative scientists.

38 SIMONTON



verting Feist’s d estimates to criterion–trait cor-
relations. These appear in Table 3.

The next step is to obtain the heritabilities for
the Psychoticism and Extraversion traits. These
came from an analysis of monozygotic and
dizygotic twins (N � 9,672) plus their siblings
(N � 3,241) that derived reliability-corrected,
broad-sense heritability estimates (Keller, Cov-
entry, Heath, & Martin, 2005). Although the
Extraversion estimates were identical for males
and females in the sample, Psychoticism exhib-
ited a small gender difference, and accordingly
the male heritabilities were used for the same
rationale mentioned in the CPI illustration.
These coefficients are also presented in Table 3.

The calculation of �cj is complicated by the
existence of a small correlation between the
Psychoticism and Extraversion factors. In
Keller et al. (2005) this correlation was .13.
When this value is combined with the two rcj
coefficients we get the two standardized partial
regression coefficients also shown in Table 3.
There were no suppression effects, and both
regression coefficients have the same sign as
their corresponding correlation coefficients but
with some reduction in size due to the redundant
variance. Given this information, it is now pos-
sible to calculate the three estimates: hc1

2 �
.036, hc2

2 � .028, and hc3
2 � .032. Hence, the

genetic contribution to the SvNS criterion
ranges between 3% and 4% using these two
traits. In contrast, the squared multiple correla-
tion (Rc

2) is .067, so in the case of hc3
2 we can

infer that about 47% of the variance explained
by the EPQ might be credited to genetic influ-
ences.

Without knowing the exact correlations be-
tween the relevant EPQ and CPI scales, it is
impossible to determine the precise degree to
which these results add an increment to the
previous estimates. Even so, it is probable that
the hc

2 estimates from the EPQ are partly inde-

pendent of those derived from the CPI, and
thereby raise the overall magnitude of heritabil-
ity for the SvNS criterion.

Intellectual Traits

The foregoing analysis provides a statistical
estimate of scientific talent insofar as it is de-
fined by personality traits with nontrivial heri-
tabilities. To be sure, the analysis leaves much
to be desired from the standpoint of the ideal
data specifications. Especially problematic were
the three criteria variables. Although these are
supposed to be narrowly defined, in fact they
were quite broadly conceived. For instance, the
SvNS criterion was defined as “any sample
from junior high school on through adulthood
that showed special talent in science, majored in
science, or that worked professionally in aca-
demic or commercial science” (Feist, 1998, p.
294). Even worse, “science” was obliged to
include the physical, biological, and social sci-
ences as well as mathematics, engineering, and
invention. To the extent that the personality
profiles are closely tailored to domain-specific
training or performance criteria, this definitional
inclusiveness implies that the hc

2 estimates are
too low. This criticism is not intended to fault
Feist’s (1998) meta-analytic review. To obtain
sound effect size estimates he had no other
option but to collate many diverse findings.
Nevertheless, in this analysis of intellectual
traits it is feasible to substitute somewhat more
specific criteria for these more global contrasts.
While introducing these criteria I will also nar-
row the number of traits examined. In fact, I
wish to concentrate just on the impact of general
intelligence, a trait that is most likely to be the
common component in all talent profiles in the
sciences (see, e.g., Gibson & Light, 1967; Roe,
1953).

I begin with the meta-analysis of Kuncel et
al. (2004). The investigators examined the rela-
tion between various training and performance
criteria and scores on the Miller Analogies Test
(MAT; Miller, 1960). The authors argued that
the MAT provides a good indicator of general
intelligence (i.e., Spearman’s g; Spearman,
1927). For example, on the basis of 15 studies
of 1,753 participants they estimated a true-score
correlation of .75. In addition, Kuncel et al.
calculated the correlations between MAT and
several academic criteria. These estimates are

Table 3
Eysenck Personality Questionnaire Heritabilities,
Criterion–Trait Correlations and Standardized
Partial Regression Coefficients for SvNS Criterion

Scale hj
2 rcj �cj

Psychoticism .43 .220 .202
Extraversion .57 .163 .137

Note. SvNS � scientists versus nonscientists.
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presented in Table 4 along with their squared
values (i.e., rcM and rcM

2). The latter indicate
the proportion of variance in each criterion that
can be attributed to variation in MAT scores.
These vary around 4% to 34%.

Multiplying these latter values by the herita-
bility of general intelligence would then yield
the proportion that might possibly be attribut-
able to genetic endowment. Unfortunately, her-
itability estimates for general intelligence can
vary greatly, a variability that reflects not just
the diversity of measures but also the variety of
estimation methods and the demographic char-
acteristics of the samples (Bouchard & McGue,
1981; Plomin, 1990). However, because the cri-
terion–MAT correlations concern adults in their
mid-20s, a reasonable if perhaps slightly con-
servative estimate would be that the true heri-
tability lies somewhere between .70 and .80 (cf.
McGue, Bouchard, Iacono, & Lykken, 1993).
So let us set hL

2 � .70 and hU
2 � .80. These

then yield two estimates of the genetic contri-
bution, namely, hcL

2 � rcM
2hL

2 and hcU
2 �

rcM
2hU

2. Because this analysis concentrates on a
single trait, it is not necessary to distinguish the
three types of quantitative criteria. They all be-
come equivalent when k � 1.

The estimates of hcL
2 range from about 3% to

24%, whereas the estimates of hcU
2 range from

about 3% to about 27%. Although the smallest
effect is for research productivity, this criterion
has a very low base rate, was highly skewed,
and was not corrected for measurement error
(cf. Feist, 1993; Rodgers & Maranto, 1989).
Moreover, the magnitude of the effect is still
large enough to infer that even this criterion
may have some genetic component. The only
genuine peculiarity in Table 4 is the positive
effect for time to finish degree. This relation is
the inverse of what would be expected from the
talent definition given earlier in this article. Sci-
entific talent should take less time rather than
more. Kuncel et al. (2004) admitted that this
result was unexpected and could merely provide
an ad hoc explanation, namely, “that more able
students are likely to spend time in graduate
school doing nondegree work (e.g., research)
that may keep them from finishing as fast as
other students” (p. 157). Because the students in
their meta-analyses represent a great diversity
of academic disciplines and subdisciplines, it is
conceivable that a more complex process is
going on here, including one that inserts some
methodological artifact. This particular puzzle
must be left for future research.

In any case, because general intelligence is
largely uncorrelated with the personality traits
used in the CPI and EPQ analyses (see, e.g.,
Brebner & Stough, 1995), we would expect that
the inclusion of this intellectual trait would add
a substantial increment to an overall hc

2. Fur-
thermore, the genetic estimated contribution of
intellectual traits would no doubt increase if we
were to incorporate more specialized intellec-
tual traits that also have substantively important
heritabilities (cf. the “specific factors” of Spear-
man, 1927). These traits include spatial reason-
ing, verbal reasoning, cognitive speed, and even
spatial and verbal working memory (see, e.g.,
Bouchard et al., 1990). For example, spatial
ability has been identified as a crucial compo-
nent of math–science talent that exhibits predic-
tive utility beyond that provided by both math-
ematical and verbal ability (Webb, Lubinski, &
Benbow, 2007). Yet measures of spatial intelli-
gence display heritabilities almost as high as
general intelligence (Bratko, 1996; McClearn,
Johansson, Berg, & Pedersen, 1997). Moreover,
these more specialized intellectual abilities may
be especially useful in differentiating distinct
types of scientific talents. For instance, in Roe’s
(1953) classic study of 64 eminent scientists it

Table 4
Criterion–MAT Correlations and Lower- and
Upper-Bound Criterion Heritability Estimates

Criterion (c) rcM rcM
2 hcL

2 hcU
2

First-year graduate
grade point average .41a .168 .118 .134

Graduate grade point
average .39a .152 .106 .122

Faculty ratings .37a .137 .096 .110
Comprehensive

examination scores .58 .336 .235 .269
Degree attainment .21b .044 .031 .035
Time to finish degree .35b .123 .086 .098
Research productivity .19b .036 .025 .029

Note. The column of criterion–MAT correlations (rcM) are
taken from the column of 	s given in Table 2 in Kuncel,
Hezlett, and Ones (2004). The criterion of “Number of
courses/credits completed” was omitted because its magni-
tude was too small to yield a nontrivial criterion heritability.
The lower-bound estimate assumes that hL

2 � .70 and the
upper-bound estimate that hU

2 � .80
a Criterion corrected for attenuation due to measurement
error.
b Corrected for range restriction in the intellectual trait
(MAT scores).
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was found that theoretical physicists, experi-
mental physicists, biologists, psychologists, and
anthropologists display distinctive profiles with
respect to verbal, mathematical, and spatial in-
telligence.

Discussion

I cautioned earlier that the preceding meta-
analytic illustrations must be remote from what
is required for an ideal assessment of the impact
of talent. Rather than estimate the needed sta-
tistics from data on a single sample or from a
sample drawn from a single population, I have
been limited to piecing together the required
information from a diversity of empirical stud-
ies. So the hc

2 values calculated for intellectual
and personality traits can be considered mere
ballpark estimates. Because the first estimator
seems to yield values too high,8 it is best to use
the second and third estimators to establish the
most likely ranges for the contributions of the
personality traits. Under that assumption, the
estimates range between 3% and 9% for the
California Psychological Inventory and be-
tween 3% and 4% for the Eysenck Personality
Questionnaire. Presumably, a portion of the
EPQ variance can be added to the CPI variance,
and to that sum can be added the variance
attributable to general intelligence as gauged
indirectly by the Miller Analogies Test (see
Table 4). It is not possible to say exactly when
the final sum would be, but a conservative guess
might be that between 10% and 20% of the
variance in these criteria could be potentially
attributed to genetic effects (cf. Simonton,
2007).

For the sake of this discussion, then, suppose
that .10 � hc

2 � .20 holds for the training and
performance criteria examined here. Does this
outcome imply that scientific talent is an impor-
tant substantive phenomenon? To answer this
question requires that we obtain some kind of
baseline for comparison. One such baseline can
be created by considering hc

2 as the multiple
correlation between the criterion c and a
weighted sum of the indirect effects of the k
genotypic traits mediated by the direct effects of
the corresponding phenotypic traits. Accord-
ingly, the estimate can be converted into Co-
hen’s d with the use of the formula dc � 2hc(1
– hc

2)-1/2 (cf. Hunter & Schmidt, 1990). This
transformation yields 0.67 � dc � 1.0, a range

that can be qualitatively expressed as medium to
large (Cohen, 1988). This range is about as
good as can be expected of most effects in the
behavioral sciences (Meyer et al., 2001;
Rosenthal, 1990). To offer specific compari-
sons, the lower-end estimate is about the same
magnitude as the relation between psychother-
apy and subsequent well-being, whereas the up-
per-end estimate is about the same size as the
correlation between height and weight among
U.S. adults (Meyer et al., 2001). As a result,
scientific talent would have to be viewed as a
potent effect. This conclusion is reinforced from
the following three considerations.

First, the criteria fall far short of what is
necessary to capture the full impact of scien-
tific talent. In the case of the personality
traits, we only examined three rather global
criteria, namely, scientists versus nonscien-
tists and creative scientists versus less-
creative scientists. These rudimentary con-
trasts ignore the conspicuous differences in
how talent is realized in the physical, biolog-
ical, and social sciences (Simonton, 2004,
2006). With respect to the single intellectual
trait, we solely considered first-year graduate
grade-point average (GPA), graduate GPA,
faculty ratings, comprehensive examination
scores, degree attainment, time to finish de-
gree, and research productivity. Besides the
fact that these criteria were defined with re-
spect to academic disciplines in general, they
still do not exhaust the available criteria.
Most strikingly, both citations and awards or
honors were ignored (cf. Feist, 1993; Simon-
ton, 1992). What is decidedly missing is the
analysis of much more narrow criteria, such
as first-year GPA in chemistry graduate pro-
grams or citations received for publications in
the earth sciences. If it is true that the profiles
of predictive traits are tightly tailored to spe-
cific criteria, then the hc

2 estimates should
increase accordingly.

Second, we have by no means exhausted all
of the conceivable phenotypic predictors. As
already mentioned, the meta-analysis was con-

8 If hc1
2 is calculated from the same variables as hc2

2 and
hc3

2, the estimates become more reasonable (e.g., .097 and
.194 for the CPI scales applied to SvNS and CvLCS criteria,
respectively). But if the investigator already knows what
predictor traits must be excluded, the use of the first esti-
mator could not be justified at all.
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fined to a single indicator of general intelli-
gence, when it is clear that more specific intel-
lectual traits likely affect either training or per-
formance. Yet it is equally manifest that
numerous personality traits are also absent from
the meta-analytic and behavior genetic integra-
tion. For instance, it should be apparent that the
literature needs more investigations that apply
the Big Five Factors (and their facets) directly
to the prediction of scientific training and per-
formance—a desideratum underlined by the
availability of appropriate heritability estimates
(e.g., Loehlin, McCrae, Costa, & John, 1998).
Perhaps even more variance may be contributed
by the vocational interests that play a major role
in career development (e.g., Lubinski & Ben-
bow, 1994) and that also feature substantial
heritabilities (Bouchard et al., 1990). For exam-
ple, Waller, Lykken, and Tellegen (1995) esti-
mated a heritability of .59 for a scientist occu-
pational interest factor. Thus, it is not unreason-
able to conjecture that hc

2 for certain criteria
might eventually be doubled, yielding a range
from 10% to 40%.

Third and last, estimates of genetic endow-
ment will have a negative bias if scientific talent
actually operates according to emergenic inher-
itance. Emergenesis occurs when a multiple-
trait characteristic is a multiplicative rather than
additive function of its component traits
(Lykken, 1982). Expressed differently, the ap-
pearance of a given attribute requires the simul-
taneous inheritance of all contributing traits.
Although emergenesis is a relatively new idea
in behavior genetics, there is already some ev-
idence that some complex characteristics are
subject to such inheritance (Lykken, McGue,
Tellegen, & Bouchard, 1992; Waller et al.,
1993). If emergenesis applies to scientific talent
as well, then the estimators defined in Equa-
tions 1, 2, and 3 are biased downward. The bias
arises from the fact that all three estimators
posit that talent is an additive function of intel-
lectual and personality traits (Simonton, 1999).
It is important to recognize that emergenesis is
not to be confused with epistatis. The former
involves the interaction across genetically in-
herited traits, whereas the latter involves the
interaction between genes within polygenic
traits (Falconer, 1987). Consequently, emer-
genic inheritance is not assessed by broad-sense
heritabilities because the latter concern a single
polygenic trait rather than configurations of nu-

merous polygenic traits defining an individual-
difference profile. Nevertheless, emergenesis
has one property in common with epistasis:
Inheritance will be less familial, again in con-
tradiction to the basic premise underlying Gal-
ton’s (1869) conception of talent. Hence, emer-
genesis, like epistasis, can help explain how
scientific talents can emerge in families that
appear otherwise to lack signs of scientific gift-
edness.

In light of the foregoing three points, it
should be understandable why we are a long
way from obtaining precise measures of sci-
entific talent. Those assessments will require
(a) more finely differentiated criteria of train-
ing and performance, (b) larger inventories of
intellectual and personality traits, and (c)
greater attention to the exact functional rela-
tion between the criteria and the predictor
traits. So this is not an issue to be settled
within a short time span. Fortunately, because
the psychology of science is undergoing
something of a revival in the 21st century
(Feist, 2006b; Feist & Gorman, 1998), it is
hoped that this specific substantive problem
will attract more differential psychologists
and behavior geneticists. If so, then in due
course a more integrated demonstration can
replace this more piecemeal argument.

Eventually it may be possible to construct
complex structural equation models of scien-
tific training and performance in which geno-
typic traits serve as exogenous variables
alongside environmental influences (cf. Feist,
1993). Besides integrating genotypic and phe-
notypic traits (plus any applicable gene–
environment interactions), such models could
specify which individual-difference variables
affect performance criteria directly and which
are mediated by their impact on training vari-
ables (cf. Helmreich, Spence, Beane, Lucker,
& Matthews, 1980; Rodgers & Maranto,
1989; Simonton, 1992). Besides capturing the
full complexity of the phenomenon, compre-
hensive models of this type would provide a
research paradigm for understanding the im-
pact of talent in achievement domains beyond
the sciences. For example, because artistic
creativity displays even stronger links with
personality than does scientific creativity
(Feist, 1998), criterion heritabilities will be
even higher than found in domains of scien-

42 SIMONTON



tific achievement.9 In time, the nature–nurture
issue that Galton (1874) first raised with re-
spect to scientific talent may be successfully
resolved for all forms of exceptional achieve-
ment.

9 For example, when the same estimation methods are
applied to the CPI effect sizes that Feist (1998) reports for
artists versus nonartists one obtains the following figures:
hc1

2 � .58, hc2
2 � .184, and hc3

2 � .212. These are all larger
than the CvNS and CvLCS results.
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